[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
[41] | 2 | // |
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
| 4 | // you may not use this file except in compliance with the License. |
---|
| 5 | // You may obtain a copy of the License at |
---|
| 6 | // |
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
| 8 | // |
---|
| 9 | // Unless required by applicable law or agreed to in writing, software |
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
| 12 | // See the License for the specific language governing permissions and |
---|
| 13 | // limitations under the License. |
---|
| 14 | |
---|
[2] | 15 | package de.ugoe.cs.cpdp.training; |
---|
| 16 | |
---|
| 17 | import java.util.HashMap; |
---|
| 18 | import java.util.HashSet; |
---|
| 19 | import java.util.Iterator; |
---|
[21] | 20 | import java.util.Map.Entry; |
---|
[2] | 21 | import java.util.Set; |
---|
| 22 | import java.util.logging.Level; |
---|
| 23 | |
---|
| 24 | import de.ugoe.cs.util.console.Console; |
---|
| 25 | import weka.classifiers.AbstractClassifier; |
---|
| 26 | import weka.classifiers.Classifier; |
---|
| 27 | import weka.clusterers.EM; |
---|
| 28 | import weka.core.DenseInstance; |
---|
| 29 | import weka.core.Instance; |
---|
| 30 | import weka.core.Instances; |
---|
| 31 | import weka.filters.Filter; |
---|
| 32 | import weka.filters.unsupervised.attribute.Remove; |
---|
| 33 | |
---|
| 34 | /** |
---|
[135] | 35 | * <p> |
---|
[41] | 36 | * Local Trainer with EM Clustering for data partitioning. Currently supports only EM Clustering. |
---|
[135] | 37 | * </p> |
---|
| 38 | * <ol> |
---|
| 39 | * <li>Cluster training data</li> |
---|
| 40 | * <li>for each cluster train a classifier with training data from cluster</li> |
---|
| 41 | * <li>match test data instance to a cluster, then classify with classifier from the cluster</li> |
---|
| 42 | * </ol> |
---|
[2] | 43 | * |
---|
[135] | 44 | * XML configuration: |
---|
[20] | 45 | * |
---|
[135] | 46 | * <pre> |
---|
| 47 | * {@code |
---|
| 48 | * <trainer name="WekaLocalEMTraining" param="NaiveBayes weka.classifiers.bayes.NaiveBayes" /> |
---|
| 49 | * } |
---|
| 50 | * </pre> |
---|
[2] | 51 | */ |
---|
[23] | 52 | public class WekaLocalEMTraining extends WekaBaseTraining implements ITrainingStrategy { |
---|
[2] | 53 | |
---|
[135] | 54 | /** |
---|
| 55 | * the classifier |
---|
| 56 | */ |
---|
[41] | 57 | private final TraindatasetCluster classifier = new TraindatasetCluster(); |
---|
[2] | 58 | |
---|
[135] | 59 | /* |
---|
| 60 | * (non-Javadoc) |
---|
| 61 | * |
---|
| 62 | * @see de.ugoe.cs.cpdp.training.WekaBaseTraining#getClassifier() |
---|
| 63 | */ |
---|
[41] | 64 | @Override |
---|
| 65 | public Classifier getClassifier() { |
---|
| 66 | return classifier; |
---|
| 67 | } |
---|
[2] | 68 | |
---|
[135] | 69 | /* |
---|
| 70 | * (non-Javadoc) |
---|
| 71 | * |
---|
| 72 | * @see de.ugoe.cs.cpdp.training.ITrainingStrategy#apply(weka.core.Instances) |
---|
| 73 | */ |
---|
[41] | 74 | @Override |
---|
| 75 | public void apply(Instances traindata) { |
---|
| 76 | try { |
---|
| 77 | classifier.buildClassifier(traindata); |
---|
| 78 | } |
---|
| 79 | catch (Exception e) { |
---|
| 80 | throw new RuntimeException(e); |
---|
| 81 | } |
---|
| 82 | } |
---|
[2] | 83 | |
---|
[135] | 84 | /** |
---|
| 85 | * <p> |
---|
| 86 | * Weka classifier for the local model with EM clustering. |
---|
| 87 | * </p> |
---|
| 88 | * |
---|
| 89 | * @author Alexander Trautsch |
---|
| 90 | */ |
---|
[41] | 91 | public class TraindatasetCluster extends AbstractClassifier { |
---|
[2] | 92 | |
---|
[135] | 93 | /** |
---|
| 94 | * default serializtion ID |
---|
| 95 | */ |
---|
[41] | 96 | private static final long serialVersionUID = 1L; |
---|
| 97 | |
---|
[135] | 98 | /** |
---|
| 99 | * EM clusterer used |
---|
| 100 | */ |
---|
[41] | 101 | private EM clusterer = null; |
---|
| 102 | |
---|
[135] | 103 | /** |
---|
| 104 | * classifiers for each cluster |
---|
| 105 | */ |
---|
[41] | 106 | private HashMap<Integer, Classifier> cclassifier; |
---|
[135] | 107 | |
---|
| 108 | /** |
---|
| 109 | * training data for each cluster |
---|
| 110 | */ |
---|
[41] | 111 | private HashMap<Integer, Instances> ctraindata; |
---|
| 112 | |
---|
| 113 | /** |
---|
| 114 | * Helper method that gives us a clean instance copy with the values of the instancelist of |
---|
| 115 | * the first parameter. |
---|
| 116 | * |
---|
| 117 | * @param instancelist |
---|
| 118 | * with attributes |
---|
| 119 | * @param instance |
---|
| 120 | * with only values |
---|
| 121 | * @return copy of the instance |
---|
| 122 | */ |
---|
| 123 | private Instance createInstance(Instances instances, Instance instance) { |
---|
| 124 | // attributes for feeding instance to classifier |
---|
| 125 | Set<String> attributeNames = new HashSet<>(); |
---|
| 126 | for (int j = 0; j < instances.numAttributes(); j++) { |
---|
| 127 | attributeNames.add(instances.attribute(j).name()); |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | double[] values = new double[instances.numAttributes()]; |
---|
| 131 | int index = 0; |
---|
| 132 | for (int j = 0; j < instance.numAttributes(); j++) { |
---|
| 133 | if (attributeNames.contains(instance.attribute(j).name())) { |
---|
| 134 | values[index] = instance.value(j); |
---|
| 135 | index++; |
---|
| 136 | } |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | Instances tmp = new Instances(instances); |
---|
| 140 | tmp.clear(); |
---|
| 141 | Instance instCopy = new DenseInstance(instance.weight(), values); |
---|
| 142 | instCopy.setDataset(tmp); |
---|
| 143 | |
---|
| 144 | return instCopy; |
---|
| 145 | } |
---|
| 146 | |
---|
[135] | 147 | /* |
---|
| 148 | * (non-Javadoc) |
---|
| 149 | * |
---|
| 150 | * @see weka.classifiers.AbstractClassifier#classifyInstance(weka.core.Instance) |
---|
| 151 | */ |
---|
[41] | 152 | @Override |
---|
| 153 | public double classifyInstance(Instance instance) { |
---|
| 154 | double ret = 0; |
---|
| 155 | try { |
---|
| 156 | // 1. copy the instance (keep the class attribute) |
---|
| 157 | Instances traindata = ctraindata.get(0); |
---|
| 158 | Instance classInstance = createInstance(traindata, instance); |
---|
| 159 | |
---|
| 160 | // 2. remove class attribute before clustering |
---|
| 161 | Remove filter = new Remove(); |
---|
| 162 | filter.setAttributeIndices("" + (traindata.classIndex() + 1)); |
---|
| 163 | filter.setInputFormat(traindata); |
---|
| 164 | traindata = Filter.useFilter(traindata, filter); |
---|
| 165 | |
---|
| 166 | // 3. copy the instance (without the class attribute) for clustering |
---|
| 167 | Instance clusterInstance = createInstance(traindata, instance); |
---|
| 168 | |
---|
| 169 | // 4. match instance without class attribute to a cluster number |
---|
| 170 | int cnum = clusterer.clusterInstance(clusterInstance); |
---|
| 171 | |
---|
| 172 | // 5. classify instance with class attribute to the classifier of that cluster |
---|
| 173 | // number |
---|
| 174 | ret = cclassifier.get(cnum).classifyInstance(classInstance); |
---|
| 175 | |
---|
| 176 | } |
---|
| 177 | catch (Exception e) { |
---|
| 178 | Console.traceln(Level.INFO, String.format("ERROR matching instance to cluster!")); |
---|
| 179 | throw new RuntimeException(e); |
---|
| 180 | } |
---|
| 181 | return ret; |
---|
| 182 | } |
---|
| 183 | |
---|
[135] | 184 | /* |
---|
| 185 | * (non-Javadoc) |
---|
| 186 | * |
---|
| 187 | * @see weka.classifiers.Classifier#buildClassifier(weka.core.Instances) |
---|
| 188 | */ |
---|
[41] | 189 | @Override |
---|
| 190 | public void buildClassifier(Instances traindata) throws Exception { |
---|
| 191 | |
---|
| 192 | // 1. copy training data |
---|
| 193 | Instances train = new Instances(traindata); |
---|
| 194 | |
---|
| 195 | // 2. remove class attribute for clustering |
---|
| 196 | Remove filter = new Remove(); |
---|
| 197 | filter.setAttributeIndices("" + (train.classIndex() + 1)); |
---|
| 198 | filter.setInputFormat(train); |
---|
| 199 | train = Filter.useFilter(train, filter); |
---|
| 200 | |
---|
| 201 | // new objects |
---|
| 202 | cclassifier = new HashMap<Integer, Classifier>(); |
---|
| 203 | ctraindata = new HashMap<Integer, Instances>(); |
---|
| 204 | |
---|
| 205 | Instances ctrain; |
---|
| 206 | int maxNumClusters = train.size(); |
---|
| 207 | boolean sufficientInstancesInEachCluster; |
---|
| 208 | do { // while(onlyTarget) |
---|
| 209 | sufficientInstancesInEachCluster = true; |
---|
| 210 | clusterer = new EM(); |
---|
| 211 | clusterer.setMaximumNumberOfClusters(maxNumClusters); |
---|
| 212 | clusterer.buildClusterer(train); |
---|
| 213 | |
---|
| 214 | // 4. get cluster membership of our traindata |
---|
| 215 | // AddCluster cfilter = new AddCluster(); |
---|
| 216 | // cfilter.setClusterer(clusterer); |
---|
| 217 | // cfilter.setInputFormat(train); |
---|
| 218 | // Instances ctrain = Filter.useFilter(train, cfilter); |
---|
| 219 | |
---|
| 220 | ctrain = new Instances(train); |
---|
| 221 | ctraindata = new HashMap<>(); |
---|
| 222 | |
---|
| 223 | // get traindata per cluster |
---|
| 224 | for (int j = 0; j < ctrain.numInstances(); j++) { |
---|
| 225 | // get the cluster number from the attributes, subract 1 because if we |
---|
| 226 | // clusterInstance we get 0-n, and this is 1-n |
---|
| 227 | // cnumber = |
---|
| 228 | // Integer.parseInt(ctrain.get(j).stringValue(ctrain.get(j).numAttributes()-1).replace("cluster", |
---|
| 229 | // "")) - 1; |
---|
| 230 | |
---|
| 231 | int cnumber = clusterer.clusterInstance(ctrain.get(j)); |
---|
| 232 | // add training data to list of instances for this cluster number |
---|
| 233 | if (!ctraindata.containsKey(cnumber)) { |
---|
| 234 | ctraindata.put(cnumber, new Instances(traindata)); |
---|
| 235 | ctraindata.get(cnumber).delete(); |
---|
| 236 | } |
---|
| 237 | ctraindata.get(cnumber).add(traindata.get(j)); |
---|
| 238 | } |
---|
| 239 | |
---|
| 240 | for (Entry<Integer, Instances> entry : ctraindata.entrySet()) { |
---|
| 241 | Instances instances = entry.getValue(); |
---|
| 242 | int[] counts = instances.attributeStats(instances.classIndex()).nominalCounts; |
---|
| 243 | for (int count : counts) { |
---|
| 244 | sufficientInstancesInEachCluster &= count > 0; |
---|
| 245 | } |
---|
| 246 | sufficientInstancesInEachCluster &= instances.numInstances() >= 5; |
---|
| 247 | } |
---|
| 248 | maxNumClusters = clusterer.numberOfClusters() - 1; |
---|
| 249 | } |
---|
| 250 | while (!sufficientInstancesInEachCluster); |
---|
| 251 | |
---|
| 252 | // train one classifier per cluster, we get the cluster number from the training data |
---|
| 253 | Iterator<Integer> clusternumber = ctraindata.keySet().iterator(); |
---|
| 254 | while (clusternumber.hasNext()) { |
---|
| 255 | int cnumber = clusternumber.next(); |
---|
| 256 | cclassifier.put(cnumber, setupClassifier()); |
---|
| 257 | cclassifier.get(cnumber).buildClassifier(ctraindata.get(cnumber)); |
---|
| 258 | |
---|
| 259 | // Console.traceln(Level.INFO, String.format("classifier in cluster "+cnumber)); |
---|
| 260 | } |
---|
| 261 | } |
---|
| 262 | } |
---|
[2] | 263 | } |
---|