1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
2 | // |
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
4 | // you may not use this file except in compliance with the License. |
---|
5 | // You may obtain a copy of the License at |
---|
6 | // |
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
8 | // |
---|
9 | // Unless required by applicable law or agreed to in writing, software |
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
12 | // See the License for the specific language governing permissions and |
---|
13 | // limitations under the License. |
---|
14 | |
---|
15 | package de.ugoe.cs.cpdp.training; |
---|
16 | |
---|
17 | import java.util.HashMap; |
---|
18 | import java.util.HashSet; |
---|
19 | import java.util.Iterator; |
---|
20 | import java.util.Map.Entry; |
---|
21 | import java.util.Set; |
---|
22 | import java.util.logging.Level; |
---|
23 | |
---|
24 | import de.ugoe.cs.util.console.Console; |
---|
25 | import weka.classifiers.AbstractClassifier; |
---|
26 | import weka.classifiers.Classifier; |
---|
27 | import weka.clusterers.EM; |
---|
28 | import weka.core.DenseInstance; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.filters.Filter; |
---|
32 | import weka.filters.unsupervised.attribute.Remove; |
---|
33 | |
---|
34 | /** |
---|
35 | * <p> |
---|
36 | * Local Trainer with EM Clustering for data partitioning. Currently supports only EM Clustering. |
---|
37 | * </p> |
---|
38 | * <ol> |
---|
39 | * <li>Cluster training data</li> |
---|
40 | * <li>for each cluster train a classifier with training data from cluster</li> |
---|
41 | * <li>match test data instance to a cluster, then classify with classifier from the cluster</li> |
---|
42 | * </ol> |
---|
43 | * |
---|
44 | * XML configuration: |
---|
45 | * |
---|
46 | * <pre> |
---|
47 | * {@code |
---|
48 | * <trainer name="WekaLocalEMTraining" param="NaiveBayes weka.classifiers.bayes.NaiveBayes" /> |
---|
49 | * } |
---|
50 | * </pre> |
---|
51 | */ |
---|
52 | public class WekaLocalEMTraining extends WekaBaseTraining implements ITrainingStrategy { |
---|
53 | |
---|
54 | /** |
---|
55 | * the classifier |
---|
56 | */ |
---|
57 | private final TraindatasetCluster classifier = new TraindatasetCluster(); |
---|
58 | |
---|
59 | /* |
---|
60 | * (non-Javadoc) |
---|
61 | * |
---|
62 | * @see de.ugoe.cs.cpdp.training.WekaBaseTraining#getClassifier() |
---|
63 | */ |
---|
64 | @Override |
---|
65 | public Classifier getClassifier() { |
---|
66 | return classifier; |
---|
67 | } |
---|
68 | |
---|
69 | /* |
---|
70 | * (non-Javadoc) |
---|
71 | * |
---|
72 | * @see de.ugoe.cs.cpdp.training.ITrainingStrategy#apply(weka.core.Instances) |
---|
73 | */ |
---|
74 | @Override |
---|
75 | public void apply(Instances traindata) { |
---|
76 | try { |
---|
77 | classifier.buildClassifier(traindata); |
---|
78 | } |
---|
79 | catch (Exception e) { |
---|
80 | throw new RuntimeException(e); |
---|
81 | } |
---|
82 | } |
---|
83 | |
---|
84 | /** |
---|
85 | * <p> |
---|
86 | * Weka classifier for the local model with EM clustering. |
---|
87 | * </p> |
---|
88 | * |
---|
89 | * @author Alexander Trautsch |
---|
90 | */ |
---|
91 | public class TraindatasetCluster extends AbstractClassifier { |
---|
92 | |
---|
93 | /** |
---|
94 | * default serializtion ID |
---|
95 | */ |
---|
96 | private static final long serialVersionUID = 1L; |
---|
97 | |
---|
98 | /** |
---|
99 | * EM clusterer used |
---|
100 | */ |
---|
101 | private EM clusterer = null; |
---|
102 | |
---|
103 | /** |
---|
104 | * classifiers for each cluster |
---|
105 | */ |
---|
106 | private HashMap<Integer, Classifier> cclassifier; |
---|
107 | |
---|
108 | /** |
---|
109 | * training data for each cluster |
---|
110 | */ |
---|
111 | private HashMap<Integer, Instances> ctraindata; |
---|
112 | |
---|
113 | /** |
---|
114 | * Helper method that gives us a clean instance copy with the values of the instancelist of |
---|
115 | * the first parameter. |
---|
116 | * |
---|
117 | * @param instancelist |
---|
118 | * with attributes |
---|
119 | * @param instance |
---|
120 | * with only values |
---|
121 | * @return copy of the instance |
---|
122 | */ |
---|
123 | private Instance createInstance(Instances instances, Instance instance) { |
---|
124 | // attributes for feeding instance to classifier |
---|
125 | Set<String> attributeNames = new HashSet<>(); |
---|
126 | for (int j = 0; j < instances.numAttributes(); j++) { |
---|
127 | attributeNames.add(instances.attribute(j).name()); |
---|
128 | } |
---|
129 | |
---|
130 | double[] values = new double[instances.numAttributes()]; |
---|
131 | int index = 0; |
---|
132 | for (int j = 0; j < instance.numAttributes(); j++) { |
---|
133 | if (attributeNames.contains(instance.attribute(j).name())) { |
---|
134 | values[index] = instance.value(j); |
---|
135 | index++; |
---|
136 | } |
---|
137 | } |
---|
138 | |
---|
139 | Instances tmp = new Instances(instances); |
---|
140 | tmp.clear(); |
---|
141 | Instance instCopy = new DenseInstance(instance.weight(), values); |
---|
142 | instCopy.setDataset(tmp); |
---|
143 | |
---|
144 | return instCopy; |
---|
145 | } |
---|
146 | |
---|
147 | /* |
---|
148 | * (non-Javadoc) |
---|
149 | * |
---|
150 | * @see weka.classifiers.AbstractClassifier#classifyInstance(weka.core.Instance) |
---|
151 | */ |
---|
152 | @Override |
---|
153 | public double classifyInstance(Instance instance) { |
---|
154 | double ret = 0; |
---|
155 | try { |
---|
156 | // 1. copy the instance (keep the class attribute) |
---|
157 | Instances traindata = ctraindata.get(0); |
---|
158 | Instance classInstance = createInstance(traindata, instance); |
---|
159 | |
---|
160 | // 2. remove class attribute before clustering |
---|
161 | Remove filter = new Remove(); |
---|
162 | filter.setAttributeIndices("" + (traindata.classIndex() + 1)); |
---|
163 | filter.setInputFormat(traindata); |
---|
164 | traindata = Filter.useFilter(traindata, filter); |
---|
165 | |
---|
166 | // 3. copy the instance (without the class attribute) for clustering |
---|
167 | Instance clusterInstance = createInstance(traindata, instance); |
---|
168 | |
---|
169 | // 4. match instance without class attribute to a cluster number |
---|
170 | int cnum = clusterer.clusterInstance(clusterInstance); |
---|
171 | |
---|
172 | // 5. classify instance with class attribute to the classifier of that cluster |
---|
173 | // number |
---|
174 | ret = cclassifier.get(cnum).classifyInstance(classInstance); |
---|
175 | |
---|
176 | } |
---|
177 | catch (Exception e) { |
---|
178 | Console.traceln(Level.INFO, String.format("ERROR matching instance to cluster!")); |
---|
179 | throw new RuntimeException(e); |
---|
180 | } |
---|
181 | return ret; |
---|
182 | } |
---|
183 | |
---|
184 | /* |
---|
185 | * (non-Javadoc) |
---|
186 | * |
---|
187 | * @see weka.classifiers.Classifier#buildClassifier(weka.core.Instances) |
---|
188 | */ |
---|
189 | @Override |
---|
190 | public void buildClassifier(Instances traindata) throws Exception { |
---|
191 | |
---|
192 | // 1. copy training data |
---|
193 | Instances train = new Instances(traindata); |
---|
194 | |
---|
195 | // 2. remove class attribute for clustering |
---|
196 | Remove filter = new Remove(); |
---|
197 | filter.setAttributeIndices("" + (train.classIndex() + 1)); |
---|
198 | filter.setInputFormat(train); |
---|
199 | train = Filter.useFilter(train, filter); |
---|
200 | |
---|
201 | // new objects |
---|
202 | cclassifier = new HashMap<Integer, Classifier>(); |
---|
203 | ctraindata = new HashMap<Integer, Instances>(); |
---|
204 | |
---|
205 | Instances ctrain; |
---|
206 | int maxNumClusters = train.size(); |
---|
207 | boolean sufficientInstancesInEachCluster; |
---|
208 | do { // while(onlyTarget) |
---|
209 | sufficientInstancesInEachCluster = true; |
---|
210 | clusterer = new EM(); |
---|
211 | clusterer.setMaximumNumberOfClusters(maxNumClusters); |
---|
212 | clusterer.buildClusterer(train); |
---|
213 | |
---|
214 | // 4. get cluster membership of our traindata |
---|
215 | // AddCluster cfilter = new AddCluster(); |
---|
216 | // cfilter.setClusterer(clusterer); |
---|
217 | // cfilter.setInputFormat(train); |
---|
218 | // Instances ctrain = Filter.useFilter(train, cfilter); |
---|
219 | |
---|
220 | ctrain = new Instances(train); |
---|
221 | ctraindata = new HashMap<>(); |
---|
222 | |
---|
223 | // get traindata per cluster |
---|
224 | for (int j = 0; j < ctrain.numInstances(); j++) { |
---|
225 | // get the cluster number from the attributes, subract 1 because if we |
---|
226 | // clusterInstance we get 0-n, and this is 1-n |
---|
227 | // cnumber = |
---|
228 | // Integer.parseInt(ctrain.get(j).stringValue(ctrain.get(j).numAttributes()-1).replace("cluster", |
---|
229 | // "")) - 1; |
---|
230 | |
---|
231 | int cnumber = clusterer.clusterInstance(ctrain.get(j)); |
---|
232 | // add training data to list of instances for this cluster number |
---|
233 | if (!ctraindata.containsKey(cnumber)) { |
---|
234 | ctraindata.put(cnumber, new Instances(traindata)); |
---|
235 | ctraindata.get(cnumber).delete(); |
---|
236 | } |
---|
237 | ctraindata.get(cnumber).add(traindata.get(j)); |
---|
238 | } |
---|
239 | |
---|
240 | for (Entry<Integer, Instances> entry : ctraindata.entrySet()) { |
---|
241 | Instances instances = entry.getValue(); |
---|
242 | int[] counts = instances.attributeStats(instances.classIndex()).nominalCounts; |
---|
243 | for (int count : counts) { |
---|
244 | sufficientInstancesInEachCluster &= count > 0; |
---|
245 | } |
---|
246 | sufficientInstancesInEachCluster &= instances.numInstances() >= 5; |
---|
247 | } |
---|
248 | maxNumClusters = clusterer.numberOfClusters() - 1; |
---|
249 | } |
---|
250 | while (!sufficientInstancesInEachCluster); |
---|
251 | |
---|
252 | // train one classifier per cluster, we get the cluster number from the training data |
---|
253 | Iterator<Integer> clusternumber = ctraindata.keySet().iterator(); |
---|
254 | while (clusternumber.hasNext()) { |
---|
255 | int cnumber = clusternumber.next(); |
---|
256 | cclassifier.put(cnumber, setupClassifier()); |
---|
257 | cclassifier.get(cnumber).buildClassifier(ctraindata.get(cnumber)); |
---|
258 | |
---|
259 | // Console.traceln(Level.INFO, String.format("classifier in cluster "+cnumber)); |
---|
260 | } |
---|
261 | } |
---|
262 | } |
---|
263 | } |
---|