1 | package de.ugoe.cs.cpdp.training; |
---|
2 | |
---|
3 | import java.io.PrintStream; |
---|
4 | import java.util.ArrayList; |
---|
5 | import java.util.HashMap; |
---|
6 | import java.util.HashSet; |
---|
7 | import java.util.Iterator; |
---|
8 | import java.util.Random; |
---|
9 | import java.util.Set; |
---|
10 | import java.util.logging.Level; |
---|
11 | |
---|
12 | import org.apache.commons.io.output.NullOutputStream; |
---|
13 | |
---|
14 | import de.ugoe.cs.cpdp.training.QuadTree; |
---|
15 | import de.ugoe.cs.util.console.Console; |
---|
16 | import weka.classifiers.AbstractClassifier; |
---|
17 | import weka.classifiers.Classifier; |
---|
18 | import weka.core.DenseInstance; |
---|
19 | import weka.core.EuclideanDistance; |
---|
20 | import weka.core.Instance; |
---|
21 | import weka.core.Instances; |
---|
22 | import weka.filters.Filter; |
---|
23 | import weka.filters.unsupervised.attribute.Remove; |
---|
24 | |
---|
25 | /** |
---|
26 | * Trainer with reimplementation of WHERE clustering algorithm from: |
---|
27 | * Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus, Lucas Layman, |
---|
28 | * Forrest Shull, Burak Turhan, Thomas Zimmermann, |
---|
29 | * "Local versus Global Lessons for Defect Prediction and Effort Estimation," |
---|
30 | * IEEE Transactions on Software Engineering, vol. 39, no. 6, pp. 822-834, June, 2013 |
---|
31 | * |
---|
32 | * With WekaLocalTraining2 we do the following: |
---|
33 | * 1) Run the Fastmap algorithm on all training data, let it calculate the 2 most significant |
---|
34 | * dimensions and projections of each instance to these dimensions |
---|
35 | * 2) With these 2 dimensions we span a QuadTree which gets recursively split on median(x) and median(y) values. |
---|
36 | * 3) We cluster the QuadTree nodes together if they have similar density (50%) |
---|
37 | * 4) We save the clusters and their training data |
---|
38 | * 5) We only use clusters with > ALPHA instances (currently Math.sqrt(SIZE)), rest is discarded with the training data of this cluster |
---|
39 | * 6) We train a Weka classifier for each cluster with the clusters training data |
---|
40 | * 7) We recalculate Fastmap distances for a single instance with the old pivots and then try to find a cluster containing the coords of the instance. |
---|
41 | * 7.1.) If we can not find a cluster (due to coords outside of all clusters) we find the nearest cluster. |
---|
42 | * 8) We classify the Instance with the classifier and traindata from the Cluster we found in 7. |
---|
43 | */ |
---|
44 | public class WekaLocalFQTraining extends WekaBaseTraining implements ITrainingStrategy { |
---|
45 | |
---|
46 | private final TraindatasetCluster classifier = new TraindatasetCluster(); |
---|
47 | |
---|
48 | @Override |
---|
49 | public Classifier getClassifier() { |
---|
50 | return classifier; |
---|
51 | } |
---|
52 | |
---|
53 | @Override |
---|
54 | public void apply(Instances traindata) { |
---|
55 | PrintStream errStr = System.err; |
---|
56 | System.setErr(new PrintStream(new NullOutputStream())); |
---|
57 | try { |
---|
58 | classifier.buildClassifier(traindata); |
---|
59 | } catch (Exception e) { |
---|
60 | throw new RuntimeException(e); |
---|
61 | } finally { |
---|
62 | System.setErr(errStr); |
---|
63 | } |
---|
64 | } |
---|
65 | |
---|
66 | |
---|
67 | public class TraindatasetCluster extends AbstractClassifier { |
---|
68 | |
---|
69 | private static final long serialVersionUID = 1L; |
---|
70 | |
---|
71 | /* classifier per cluster */ |
---|
72 | private HashMap<Integer, Classifier> cclassifier; |
---|
73 | |
---|
74 | /* instances per cluster */ |
---|
75 | private HashMap<Integer, Instances> ctraindata; |
---|
76 | |
---|
77 | /* holds the instances and indices of the pivot objects of the Fastmap calculation in buildClassifier*/ |
---|
78 | private HashMap<Integer, Instance> cpivots; |
---|
79 | |
---|
80 | /* holds the indices of the pivot objects for x,y and the dimension [x,y][dimension]*/ |
---|
81 | private int[][] cpivotindices; |
---|
82 | |
---|
83 | /* holds the sizes of the cluster multiple "boxes" per cluster */ |
---|
84 | private HashMap<Integer, ArrayList<Double[][]>> csize; |
---|
85 | |
---|
86 | /* debug vars */ |
---|
87 | @SuppressWarnings("unused") |
---|
88 | private boolean show_biggest = true; |
---|
89 | |
---|
90 | @SuppressWarnings("unused") |
---|
91 | private int CFOUND = 0; |
---|
92 | @SuppressWarnings("unused") |
---|
93 | private int CNOTFOUND = 0; |
---|
94 | |
---|
95 | |
---|
96 | private Instance createInstance(Instances instances, Instance instance) { |
---|
97 | // attributes for feeding instance to classifier |
---|
98 | Set<String> attributeNames = new HashSet<>(); |
---|
99 | for( int j=0; j<instances.numAttributes(); j++ ) { |
---|
100 | attributeNames.add(instances.attribute(j).name()); |
---|
101 | } |
---|
102 | |
---|
103 | double[] values = new double[instances.numAttributes()]; |
---|
104 | int index = 0; |
---|
105 | for( int j=0; j<instance.numAttributes(); j++ ) { |
---|
106 | if( attributeNames.contains(instance.attribute(j).name())) { |
---|
107 | values[index] = instance.value(j); |
---|
108 | index++; |
---|
109 | } |
---|
110 | } |
---|
111 | |
---|
112 | Instances tmp = new Instances(instances); |
---|
113 | tmp.clear(); |
---|
114 | Instance instCopy = new DenseInstance(instance.weight(), values); |
---|
115 | instCopy.setDataset(tmp); |
---|
116 | |
---|
117 | return instCopy; |
---|
118 | } |
---|
119 | |
---|
120 | /** |
---|
121 | * Because Fastmap saves only the image not the values of the attributes it used |
---|
122 | * we can not use the old data directly to classify single instances to clusters. |
---|
123 | * |
---|
124 | * To classify a single instance we do a new fastmap computation with only the instance and |
---|
125 | * the old pivot elements. |
---|
126 | * |
---|
127 | * After that we find the cluster with our fastmap result for x and y. |
---|
128 | */ |
---|
129 | @Override |
---|
130 | public double classifyInstance(Instance instance) { |
---|
131 | |
---|
132 | double ret = 0; |
---|
133 | try { |
---|
134 | // classinstance gets passed to classifier |
---|
135 | Instances traindata = ctraindata.get(0); |
---|
136 | Instance classInstance = createInstance(traindata, instance); |
---|
137 | |
---|
138 | // this one keeps the class attribute |
---|
139 | Instances traindata2 = ctraindata.get(1); |
---|
140 | |
---|
141 | // remove class attribute before clustering |
---|
142 | Remove filter = new Remove(); |
---|
143 | filter.setAttributeIndices("" + (traindata.classIndex() + 1)); |
---|
144 | filter.setInputFormat(traindata); |
---|
145 | traindata = Filter.useFilter(traindata, filter); |
---|
146 | Instance clusterInstance = createInstance(traindata, instance); |
---|
147 | |
---|
148 | Fastmap FMAP = new Fastmap(2); |
---|
149 | EuclideanDistance dist = new EuclideanDistance(traindata); |
---|
150 | |
---|
151 | // we set our pivot indices [x=0,y=1][dimension] |
---|
152 | int[][] npivotindices = new int[2][2]; |
---|
153 | npivotindices[0][0] = 1; |
---|
154 | npivotindices[1][0] = 2; |
---|
155 | npivotindices[0][1] = 3; |
---|
156 | npivotindices[1][1] = 4; |
---|
157 | |
---|
158 | // build temp dist matrix (2 pivots per dimension + 1 instance we want to classify) |
---|
159 | // the instance we want to classify comes first after that the pivot elements in the order defined above |
---|
160 | double[][] distmat = new double[2*FMAP.target_dims+1][2*FMAP.target_dims+1]; |
---|
161 | distmat[0][0] = 0; |
---|
162 | distmat[0][1] = dist.distance(clusterInstance, this.cpivots.get((Integer)this.cpivotindices[0][0])); |
---|
163 | distmat[0][2] = dist.distance(clusterInstance, this.cpivots.get((Integer)this.cpivotindices[1][0])); |
---|
164 | distmat[0][3] = dist.distance(clusterInstance, this.cpivots.get((Integer)this.cpivotindices[0][1])); |
---|
165 | distmat[0][4] = dist.distance(clusterInstance, this.cpivots.get((Integer)this.cpivotindices[1][1])); |
---|
166 | |
---|
167 | distmat[1][0] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[0][0]), clusterInstance); |
---|
168 | distmat[1][1] = 0; |
---|
169 | distmat[1][2] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[0][0]), this.cpivots.get((Integer)this.cpivotindices[1][0])); |
---|
170 | distmat[1][3] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[0][0]), this.cpivots.get((Integer)this.cpivotindices[0][1])); |
---|
171 | distmat[1][4] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[0][0]), this.cpivots.get((Integer)this.cpivotindices[1][1])); |
---|
172 | |
---|
173 | distmat[2][0] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[1][0]), clusterInstance); |
---|
174 | distmat[2][1] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[1][0]), this.cpivots.get((Integer)this.cpivotindices[0][0])); |
---|
175 | distmat[2][2] = 0; |
---|
176 | distmat[2][3] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[1][0]), this.cpivots.get((Integer)this.cpivotindices[0][1])); |
---|
177 | distmat[2][4] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[1][0]), this.cpivots.get((Integer)this.cpivotindices[1][1])); |
---|
178 | |
---|
179 | distmat[3][0] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[0][1]), clusterInstance); |
---|
180 | distmat[3][1] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[0][1]), this.cpivots.get((Integer)this.cpivotindices[0][0])); |
---|
181 | distmat[3][2] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[0][1]), this.cpivots.get((Integer)this.cpivotindices[1][0])); |
---|
182 | distmat[3][3] = 0; |
---|
183 | distmat[3][4] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[0][1]), this.cpivots.get((Integer)this.cpivotindices[1][1])); |
---|
184 | |
---|
185 | distmat[4][0] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[1][1]), clusterInstance); |
---|
186 | distmat[4][1] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[1][1]), this.cpivots.get((Integer)this.cpivotindices[0][0])); |
---|
187 | distmat[4][2] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[1][1]), this.cpivots.get((Integer)this.cpivotindices[1][0])); |
---|
188 | distmat[4][3] = dist.distance(this.cpivots.get((Integer)this.cpivotindices[1][1]), this.cpivots.get((Integer)this.cpivotindices[0][1])); |
---|
189 | distmat[4][4] = 0; |
---|
190 | |
---|
191 | |
---|
192 | /* debug output: show biggest distance found within the new distance matrix |
---|
193 | double biggest = 0; |
---|
194 | for(int i=0; i < distmat.length; i++) { |
---|
195 | for(int j=0; j < distmat[0].length; j++) { |
---|
196 | if(biggest < distmat[i][j]) { |
---|
197 | biggest = distmat[i][j]; |
---|
198 | } |
---|
199 | } |
---|
200 | } |
---|
201 | if(this.show_biggest) { |
---|
202 | Console.traceln(Level.INFO, String.format(""+clusterInstance)); |
---|
203 | Console.traceln(Level.INFO, String.format("biggest distances: "+ biggest)); |
---|
204 | this.show_biggest = false; |
---|
205 | } |
---|
206 | */ |
---|
207 | |
---|
208 | FMAP.setDistmat(distmat); |
---|
209 | FMAP.setPivots(npivotindices); |
---|
210 | FMAP.calculate(); |
---|
211 | double[][] x = FMAP.getX(); |
---|
212 | double[] proj = x[0]; |
---|
213 | |
---|
214 | // debug output: show the calculated distance matrix, our result vektor for the instance and the complete result matrix |
---|
215 | /* |
---|
216 | Console.traceln(Level.INFO, "distmat:"); |
---|
217 | for(int i=0; i<distmat.length; i++){ |
---|
218 | for(int j=0; j<distmat[0].length; j++){ |
---|
219 | Console.trace(Level.INFO, String.format("%20s", distmat[i][j])); |
---|
220 | } |
---|
221 | Console.traceln(Level.INFO, ""); |
---|
222 | } |
---|
223 | |
---|
224 | Console.traceln(Level.INFO, "vector:"); |
---|
225 | for(int i=0; i < proj.length; i++) { |
---|
226 | Console.trace(Level.INFO, String.format("%20s", proj[i])); |
---|
227 | } |
---|
228 | Console.traceln(Level.INFO, ""); |
---|
229 | |
---|
230 | Console.traceln(Level.INFO, "resultmat:"); |
---|
231 | for(int i=0; i<x.length; i++){ |
---|
232 | for(int j=0; j<x[0].length; j++){ |
---|
233 | Console.trace(Level.INFO, String.format("%20s", x[i][j])); |
---|
234 | } |
---|
235 | Console.traceln(Level.INFO, ""); |
---|
236 | } |
---|
237 | */ |
---|
238 | |
---|
239 | // now we iterate over all clusters (well, boxes of sizes per cluster really) and save the number of the |
---|
240 | // cluster in which we are |
---|
241 | int cnumber; |
---|
242 | int found_cnumber = -1; |
---|
243 | Iterator<Integer> clusternumber = this.csize.keySet().iterator(); |
---|
244 | while ( clusternumber.hasNext() && found_cnumber == -1) { |
---|
245 | cnumber = clusternumber.next(); |
---|
246 | |
---|
247 | // now iterate over the boxes of the cluster and hope we find one (cluster could have been removed) |
---|
248 | // or we are too far away from any cluster because of the fastmap calculation with the initial pivot objects |
---|
249 | for ( int box=0; box < this.csize.get(cnumber).size(); box++ ) { |
---|
250 | Double[][] current = this.csize.get(cnumber).get(box); |
---|
251 | |
---|
252 | if(proj[0] >= current[0][0] && proj[0] <= current[0][1] && // x |
---|
253 | proj[1] >= current[1][0] && proj[1] <= current[1][1]) { // y |
---|
254 | found_cnumber = cnumber; |
---|
255 | } |
---|
256 | } |
---|
257 | } |
---|
258 | |
---|
259 | // we want to count how often we are really inside a cluster |
---|
260 | //if ( found_cnumber == -1 ) { |
---|
261 | // CNOTFOUND += 1; |
---|
262 | //}else { |
---|
263 | // CFOUND += 1; |
---|
264 | //} |
---|
265 | |
---|
266 | // now it can happen that we do not find a cluster because we deleted it previously (too few instances) |
---|
267 | // or we get bigger distance measures from weka so that we are completely outside of our clusters. |
---|
268 | // in these cases we just find the nearest cluster to our instance and use it for classification. |
---|
269 | // to do that we use the EuclideanDistance again to compare our distance to all other Instances |
---|
270 | // then we take the cluster of the closest weka instance |
---|
271 | dist = new EuclideanDistance(traindata2); |
---|
272 | if( !this.ctraindata.containsKey(found_cnumber) ) { |
---|
273 | double min_distance = Double.MAX_VALUE; |
---|
274 | clusternumber = ctraindata.keySet().iterator(); |
---|
275 | while ( clusternumber.hasNext() ) { |
---|
276 | cnumber = clusternumber.next(); |
---|
277 | for(int i=0; i < ctraindata.get(cnumber).size(); i++) { |
---|
278 | if(dist.distance(instance, ctraindata.get(cnumber).get(i)) <= min_distance) { |
---|
279 | found_cnumber = cnumber; |
---|
280 | min_distance = dist.distance(instance, ctraindata.get(cnumber).get(i)); |
---|
281 | } |
---|
282 | } |
---|
283 | } |
---|
284 | } |
---|
285 | |
---|
286 | // here we have the cluster where an instance has the minimum distance between itself and the |
---|
287 | // instance we want to classify |
---|
288 | // if we still have not found a cluster we exit because something is really wrong |
---|
289 | if( found_cnumber == -1 ) { |
---|
290 | Console.traceln(Level.INFO, String.format("ERROR matching instance to cluster with full search!")); |
---|
291 | throw new RuntimeException("cluster not found with full search"); |
---|
292 | } |
---|
293 | |
---|
294 | // classify the passed instance with the cluster we found and its training data |
---|
295 | ret = cclassifier.get(found_cnumber).classifyInstance(classInstance); |
---|
296 | |
---|
297 | }catch( Exception e ) { |
---|
298 | Console.traceln(Level.INFO, String.format("ERROR matching instance to cluster!")); |
---|
299 | throw new RuntimeException(e); |
---|
300 | } |
---|
301 | return ret; |
---|
302 | } |
---|
303 | |
---|
304 | @Override |
---|
305 | public void buildClassifier(Instances traindata) throws Exception { |
---|
306 | |
---|
307 | //Console.traceln(Level.INFO, String.format("found: "+ CFOUND + ", notfound: " + CNOTFOUND)); |
---|
308 | this.show_biggest = true; |
---|
309 | |
---|
310 | cclassifier = new HashMap<Integer, Classifier>(); |
---|
311 | ctraindata = new HashMap<Integer, Instances>(); |
---|
312 | cpivots = new HashMap<Integer, Instance>(); |
---|
313 | cpivotindices = new int[2][2]; |
---|
314 | |
---|
315 | // 1. copy traindata |
---|
316 | Instances train = new Instances(traindata); |
---|
317 | Instances train2 = new Instances(traindata); // this one keeps the class attribute |
---|
318 | |
---|
319 | // 2. remove class attribute for clustering |
---|
320 | Remove filter = new Remove(); |
---|
321 | filter.setAttributeIndices("" + (train.classIndex() + 1)); |
---|
322 | filter.setInputFormat(train); |
---|
323 | train = Filter.useFilter(train, filter); |
---|
324 | |
---|
325 | // 3. calculate distance matrix (needed for Fastmap because it starts at dimension 1) |
---|
326 | double biggest = 0; |
---|
327 | EuclideanDistance dist = new EuclideanDistance(train); |
---|
328 | double[][] distmat = new double[train.size()][train.size()]; |
---|
329 | for( int i=0; i < train.size(); i++ ) { |
---|
330 | for( int j=0; j < train.size(); j++ ) { |
---|
331 | distmat[i][j] = dist.distance(train.get(i), train.get(j)); |
---|
332 | if( distmat[i][j] > biggest ) { |
---|
333 | biggest = distmat[i][j]; |
---|
334 | } |
---|
335 | } |
---|
336 | } |
---|
337 | //Console.traceln(Level.INFO, String.format("biggest distances: "+ biggest)); |
---|
338 | |
---|
339 | // 4. run fastmap for 2 dimensions on the distance matrix |
---|
340 | Fastmap FMAP = new Fastmap(2); |
---|
341 | FMAP.setDistmat(distmat); |
---|
342 | FMAP.calculate(); |
---|
343 | |
---|
344 | cpivotindices = FMAP.getPivots(); |
---|
345 | |
---|
346 | double[][] X = FMAP.getX(); |
---|
347 | distmat = new double[0][0]; |
---|
348 | System.gc(); |
---|
349 | |
---|
350 | // quadtree payload generation |
---|
351 | ArrayList<QuadTreePayload<Instance>> qtp = new ArrayList<QuadTreePayload<Instance>>(); |
---|
352 | |
---|
353 | // we need these for the sizes of the quadrants |
---|
354 | double[] big = {0,0}; |
---|
355 | double[] small = {Double.MAX_VALUE,Double.MAX_VALUE}; |
---|
356 | |
---|
357 | // set quadtree payload values and get max and min x and y values for size |
---|
358 | for( int i=0; i<X.length; i++ ){ |
---|
359 | if(X[i][0] >= big[0]) { |
---|
360 | big[0] = X[i][0]; |
---|
361 | } |
---|
362 | if(X[i][1] >= big[1]) { |
---|
363 | big[1] = X[i][1]; |
---|
364 | } |
---|
365 | if(X[i][0] <= small[0]) { |
---|
366 | small[0] = X[i][0]; |
---|
367 | } |
---|
368 | if(X[i][1] <= small[1]) { |
---|
369 | small[1] = X[i][1]; |
---|
370 | } |
---|
371 | QuadTreePayload<Instance> tmp = new QuadTreePayload<Instance>(X[i][0], X[i][1], train2.get(i)); |
---|
372 | qtp.add(tmp); |
---|
373 | } |
---|
374 | |
---|
375 | //Console.traceln(Level.INFO, String.format("size for cluster ("+small[0]+","+small[1]+") - ("+big[0]+","+big[1]+")")); |
---|
376 | |
---|
377 | // 5. generate quadtree |
---|
378 | QuadTree TREE = new QuadTree(null, qtp); |
---|
379 | QuadTree.size = train.size(); |
---|
380 | QuadTree.alpha = Math.sqrt(train.size()); |
---|
381 | QuadTree.ccluster = new ArrayList<ArrayList<QuadTreePayload<Instance>>>(); |
---|
382 | QuadTree.csize = new HashMap<Integer, ArrayList<Double[][]>>(); |
---|
383 | |
---|
384 | //Console.traceln(Level.INFO, String.format("Generate QuadTree with "+ QuadTree.size + " size, Alpha: "+ QuadTree.alpha+ "")); |
---|
385 | |
---|
386 | // set the size and then split the tree recursively at the median value for x, y |
---|
387 | TREE.setSize(new double[] {small[0], big[0]}, new double[] {small[1], big[1]}); |
---|
388 | |
---|
389 | // recursive split und grid clustering eher static |
---|
390 | TREE.recursiveSplit(TREE); |
---|
391 | |
---|
392 | // generate list of nodes sorted by density (childs only) |
---|
393 | ArrayList<QuadTree> l = new ArrayList<QuadTree>(TREE.getList(TREE)); |
---|
394 | |
---|
395 | // recursive grid clustering (tree pruning), the values are stored in ccluster |
---|
396 | TREE.gridClustering(l); |
---|
397 | |
---|
398 | // wir iterieren durch die cluster und sammeln uns die instanzen daraus |
---|
399 | //ctraindata.clear(); |
---|
400 | for( int i=0; i < QuadTree.ccluster.size(); i++ ) { |
---|
401 | ArrayList<QuadTreePayload<Instance>> current = QuadTree.ccluster.get(i); |
---|
402 | |
---|
403 | // i is the clusternumber |
---|
404 | // we only allow clusters with Instances > ALPHA, other clusters are not considered! |
---|
405 | //if(current.size() > QuadTree.alpha) { |
---|
406 | if( current.size() > 4 ) { |
---|
407 | for( int j=0; j < current.size(); j++ ) { |
---|
408 | if( !ctraindata.containsKey(i) ) { |
---|
409 | ctraindata.put(i, new Instances(train2)); |
---|
410 | ctraindata.get(i).delete(); |
---|
411 | } |
---|
412 | ctraindata.get(i).add(current.get(j).getInst()); |
---|
413 | } |
---|
414 | }else{ |
---|
415 | Console.traceln(Level.INFO, String.format("drop cluster, only: " + current.size() + " instances")); |
---|
416 | } |
---|
417 | } |
---|
418 | |
---|
419 | // here we keep things we need later on |
---|
420 | // QuadTree sizes for later use (matching new instances) |
---|
421 | this.csize = new HashMap<Integer, ArrayList<Double[][]>>(QuadTree.csize); |
---|
422 | |
---|
423 | // pivot elements |
---|
424 | //this.cpivots.clear(); |
---|
425 | for( int i=0; i < FMAP.PA[0].length; i++ ) { |
---|
426 | this.cpivots.put(FMAP.PA[0][i], (Instance)train.get(FMAP.PA[0][i]).copy()); |
---|
427 | } |
---|
428 | for( int j=0; j < FMAP.PA[0].length; j++ ) { |
---|
429 | this.cpivots.put(FMAP.PA[1][j], (Instance)train.get(FMAP.PA[1][j]).copy()); |
---|
430 | } |
---|
431 | |
---|
432 | |
---|
433 | /* debug output |
---|
434 | int pnumber; |
---|
435 | Iterator<Integer> pivotnumber = cpivots.keySet().iterator(); |
---|
436 | while ( pivotnumber.hasNext() ) { |
---|
437 | pnumber = pivotnumber.next(); |
---|
438 | Console.traceln(Level.INFO, String.format("pivot: "+pnumber+ " inst: "+cpivots.get(pnumber))); |
---|
439 | } |
---|
440 | */ |
---|
441 | |
---|
442 | // train one classifier per cluster, we get the cluster number from the traindata |
---|
443 | int cnumber; |
---|
444 | Iterator<Integer> clusternumber = ctraindata.keySet().iterator(); |
---|
445 | //cclassifier.clear(); |
---|
446 | |
---|
447 | //int traindata_count = 0; |
---|
448 | while ( clusternumber.hasNext() ) { |
---|
449 | cnumber = clusternumber.next(); |
---|
450 | cclassifier.put(cnumber,setupClassifier()); // this is the classifier used for the cluster |
---|
451 | cclassifier.get(cnumber).buildClassifier(ctraindata.get(cnumber)); |
---|
452 | //Console.traceln(Level.INFO, String.format("classifier in cluster "+cnumber)); |
---|
453 | //traindata_count += ctraindata.get(cnumber).size(); |
---|
454 | //Console.traceln(Level.INFO, String.format("building classifier in cluster "+cnumber +" with "+ ctraindata.get(cnumber).size() +" traindata instances")); |
---|
455 | } |
---|
456 | |
---|
457 | // add all traindata |
---|
458 | //Console.traceln(Level.INFO, String.format("traindata in all clusters: " + traindata_count)); |
---|
459 | } |
---|
460 | } |
---|
461 | |
---|
462 | |
---|
463 | /** |
---|
464 | * Payload for the QuadTree. |
---|
465 | * x and y are the calculated Fastmap values. |
---|
466 | * T is a weka instance. |
---|
467 | */ |
---|
468 | public class QuadTreePayload<T> { |
---|
469 | |
---|
470 | public double x; |
---|
471 | public double y; |
---|
472 | private T inst; |
---|
473 | |
---|
474 | public QuadTreePayload(double x, double y, T value) { |
---|
475 | this.x = x; |
---|
476 | this.y = y; |
---|
477 | this.inst = value; |
---|
478 | } |
---|
479 | |
---|
480 | public T getInst() { |
---|
481 | return this.inst; |
---|
482 | } |
---|
483 | } |
---|
484 | |
---|
485 | |
---|
486 | /** |
---|
487 | * Fastmap implementation |
---|
488 | * |
---|
489 | * Faloutsos, C., & Lin, K. I. (1995). |
---|
490 | * FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets |
---|
491 | * (Vol. 24, No. 2, pp. 163-174). ACM. |
---|
492 | */ |
---|
493 | public class Fastmap { |
---|
494 | |
---|
495 | /*N x k Array, at the end, the i-th row will be the image of the i-th object*/ |
---|
496 | private double[][] X; |
---|
497 | |
---|
498 | /*2 x k pivot Array one pair per recursive call*/ |
---|
499 | private int[][] PA; |
---|
500 | |
---|
501 | /*Objects we got (distance matrix)*/ |
---|
502 | private double[][] O; |
---|
503 | |
---|
504 | /*column of X currently updated (also the dimension)*/ |
---|
505 | private int col = 0; |
---|
506 | |
---|
507 | /*number of dimensions we want*/ |
---|
508 | private int target_dims = 0; |
---|
509 | |
---|
510 | // if we already have the pivot elements |
---|
511 | private boolean pivot_set = false; |
---|
512 | |
---|
513 | |
---|
514 | public Fastmap(int k) { |
---|
515 | this.target_dims = k; |
---|
516 | } |
---|
517 | |
---|
518 | /** |
---|
519 | * Sets the distance matrix |
---|
520 | * and params that depend on this |
---|
521 | * @param O |
---|
522 | */ |
---|
523 | public void setDistmat(double[][] O) { |
---|
524 | this.O = O; |
---|
525 | int N = O.length; |
---|
526 | this.X = new double[N][this.target_dims]; |
---|
527 | this.PA = new int[2][this.target_dims]; |
---|
528 | } |
---|
529 | |
---|
530 | /** |
---|
531 | * Set pivot elements, we need that to classify instances |
---|
532 | * after the calculation is complete (because we then want to reuse |
---|
533 | * only the pivot elements). |
---|
534 | * |
---|
535 | * @param pi |
---|
536 | */ |
---|
537 | public void setPivots(int[][] pi) { |
---|
538 | this.pivot_set = true; |
---|
539 | this.PA = pi; |
---|
540 | } |
---|
541 | |
---|
542 | /** |
---|
543 | * Return the pivot elements that were chosen during the calculation |
---|
544 | * |
---|
545 | * @return |
---|
546 | */ |
---|
547 | public int[][] getPivots() { |
---|
548 | return this.PA; |
---|
549 | } |
---|
550 | |
---|
551 | /** |
---|
552 | * The distance function for euclidean distance |
---|
553 | * |
---|
554 | * Acts according to equation 4 of the fastmap paper |
---|
555 | * |
---|
556 | * @param x x index of x image (if k==0 x object) |
---|
557 | * @param y y index of y image (if k==0 y object) |
---|
558 | * @param kdimensionality |
---|
559 | * @return distance |
---|
560 | */ |
---|
561 | private double dist(int x, int y, int k) { |
---|
562 | |
---|
563 | // basis is object distance, we get this from our distance matrix |
---|
564 | double tmp = this.O[x][y] * this.O[x][y]; |
---|
565 | |
---|
566 | // decrease by projections |
---|
567 | for( int i=0; i < k; i++ ) { |
---|
568 | double tmp2 = (this.X[x][i] - this.X[y][i]); |
---|
569 | tmp -= tmp2 * tmp2; |
---|
570 | } |
---|
571 | |
---|
572 | return Math.abs(tmp); |
---|
573 | } |
---|
574 | |
---|
575 | /** |
---|
576 | * Find the object farthest from the given index |
---|
577 | * This method is a helper Method for findDistandObjects |
---|
578 | * |
---|
579 | * @param index of the object |
---|
580 | * @return index of the farthest object from the given index |
---|
581 | */ |
---|
582 | private int findFarthest(int index) { |
---|
583 | double furthest = Double.MIN_VALUE; |
---|
584 | int ret = 0; |
---|
585 | |
---|
586 | for( int i=0; i < O.length; i++ ) { |
---|
587 | double dist = this.dist(i, index, this.col); |
---|
588 | if( i != index && dist > furthest ) { |
---|
589 | furthest = dist; |
---|
590 | ret = i; |
---|
591 | } |
---|
592 | } |
---|
593 | return ret; |
---|
594 | } |
---|
595 | |
---|
596 | /** |
---|
597 | * Finds the pivot objects |
---|
598 | * |
---|
599 | * This method is basically algorithm 1 of the fastmap paper. |
---|
600 | * |
---|
601 | * @return 2 indexes of the choosen pivot objects |
---|
602 | */ |
---|
603 | private int[] findDistantObjects() { |
---|
604 | // 1. choose object randomly |
---|
605 | Random r = new Random(); |
---|
606 | int obj = r.nextInt(this.O.length); |
---|
607 | |
---|
608 | // 2. find farthest object from randomly chosen object |
---|
609 | int idx1 = this.findFarthest(obj); |
---|
610 | |
---|
611 | // 3. find farthest object from previously farthest object |
---|
612 | int idx2 = this.findFarthest(idx1); |
---|
613 | |
---|
614 | return new int[] {idx1, idx2}; |
---|
615 | } |
---|
616 | |
---|
617 | /** |
---|
618 | * Calculates the new k-vector values (projections) |
---|
619 | * |
---|
620 | * This is basically algorithm 2 of the fastmap paper. |
---|
621 | * We just added the possibility to pre-set the pivot elements because |
---|
622 | * we need to classify single instances after the computation is already done. |
---|
623 | * |
---|
624 | * @param dims dimensionality |
---|
625 | */ |
---|
626 | public void calculate() { |
---|
627 | |
---|
628 | for( int k=0; k < this.target_dims; k++ ) { |
---|
629 | // 2) choose pivot objects |
---|
630 | if ( !this.pivot_set ) { |
---|
631 | int[] pivots = this.findDistantObjects(); |
---|
632 | |
---|
633 | // 3) record ids of pivot objects |
---|
634 | this.PA[0][this.col] = pivots[0]; |
---|
635 | this.PA[1][this.col] = pivots[1]; |
---|
636 | } |
---|
637 | |
---|
638 | // 4) inter object distances are zero (this.X is initialized with 0 so we just continue) |
---|
639 | if( this.dist(this.PA[0][this.col], this.PA[1][this.col], this.col) == 0 ) { |
---|
640 | continue; |
---|
641 | } |
---|
642 | |
---|
643 | // 5) project the objects on the line between the pivots |
---|
644 | double dxy = this.dist(this.PA[0][this.col], this.PA[1][this.col], this.col); |
---|
645 | for( int i=0; i < this.O.length; i++ ) { |
---|
646 | |
---|
647 | double dix = this.dist(i, this.PA[0][this.col], this.col); |
---|
648 | double diy = this.dist(i, this.PA[1][this.col], this.col); |
---|
649 | |
---|
650 | double tmp = (dix + dxy - diy) / (2 * Math.sqrt(dxy)); |
---|
651 | |
---|
652 | // save the projection |
---|
653 | this.X[i][this.col] = tmp; |
---|
654 | } |
---|
655 | |
---|
656 | this.col += 1; |
---|
657 | } |
---|
658 | } |
---|
659 | |
---|
660 | /** |
---|
661 | * returns the result matrix of the projections |
---|
662 | * |
---|
663 | * @return calculated result |
---|
664 | */ |
---|
665 | public double[][] getX() { |
---|
666 | return this.X; |
---|
667 | } |
---|
668 | } |
---|
669 | } |
---|