1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.training;
|
---|
16 |
|
---|
17 | import java.util.logging.Level;
|
---|
18 |
|
---|
19 | import de.ugoe.cs.util.console.Console;
|
---|
20 | import weka.classifiers.rules.ZeroR;
|
---|
21 | import weka.core.Instances;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * <p>
|
---|
25 | * The first parameter is the trainer name, second parameter is class name. All subsequent
|
---|
26 | * parameters are configuration parameters of the algorithms. Cross validation parameters always
|
---|
27 | * come last and are prepended with -CVPARAM
|
---|
28 | * </p>
|
---|
29 | * XML Configurations for Weka Classifiers:
|
---|
30 | * <pre>
|
---|
31 | * {@code
|
---|
32 | * <!-- examples -->
|
---|
33 | * <trainer name="WekaTraining" param="NaiveBayes weka.classifiers.bayes.NaiveBayes" />
|
---|
34 | * <trainer name="WekaTraining" param="Logistic weka.classifiers.functions.Logistic -R 1.0E-8 -M -1" />
|
---|
35 | * }
|
---|
36 | * </pre>
|
---|
37 | *
|
---|
38 | */
|
---|
39 | public class WekaTraining extends WekaBaseTraining implements ITrainingStrategy {
|
---|
40 |
|
---|
41 | @Override
|
---|
42 | public void apply(Instances traindata) {
|
---|
43 | classifier = setupClassifier();
|
---|
44 | if( classifier==null ) {
|
---|
45 | Console.printerr("classifier of WekaTraining is null");
|
---|
46 | throw new RuntimeException("classifier of WekaTraining is null");
|
---|
47 | }
|
---|
48 | try {
|
---|
49 | if (classifier == null) {
|
---|
50 | Console.traceln(Level.WARNING, String.format("classifier null!"));
|
---|
51 | }
|
---|
52 | classifier.buildClassifier(traindata);
|
---|
53 | }
|
---|
54 | catch (Exception e) {
|
---|
55 | if (e.getMessage().contains("Not enough training instances with class labels")) {
|
---|
56 | Console.traceln(Level.SEVERE,
|
---|
57 | "failure due to lack of instances: " + e.getMessage());
|
---|
58 | Console.traceln(Level.SEVERE, "training ZeroR classifier instead");
|
---|
59 | classifier = new ZeroR();
|
---|
60 | try {
|
---|
61 | classifier.buildClassifier(traindata);
|
---|
62 | }
|
---|
63 | catch (Exception e2) {
|
---|
64 | throw new RuntimeException(e2);
|
---|
65 | }
|
---|
66 | }
|
---|
67 | else {
|
---|
68 | throw new RuntimeException(e);
|
---|
69 | }
|
---|
70 | }
|
---|
71 | }
|
---|
72 | }
|
---|