1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.training;
|
---|
16 |
|
---|
17 | import java.io.PrintStream;
|
---|
18 | import java.util.logging.Level;
|
---|
19 |
|
---|
20 | import org.apache.commons.io.output.NullOutputStream;
|
---|
21 |
|
---|
22 | import de.ugoe.cs.util.console.Console;
|
---|
23 | import weka.classifiers.rules.ZeroR;
|
---|
24 | import weka.core.Instances;
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * Programmatic WekaTraining
|
---|
28 | *
|
---|
29 | * first parameter is Trainer Name. second parameter is class name
|
---|
30 | *
|
---|
31 | * all subsequent parameters are configuration params (for example for trees) Cross Validation
|
---|
32 | * params always come last and are prepended with -CVPARAM
|
---|
33 | *
|
---|
34 | * XML Configurations for Weka Classifiers:
|
---|
35 | *
|
---|
36 | * <pre>
|
---|
37 | * {@code
|
---|
38 | * <!-- examples -->
|
---|
39 | * <trainer name="WekaTraining" param="NaiveBayes weka.classifiers.bayes.NaiveBayes" />
|
---|
40 | * <trainer name="WekaTraining" param="Logistic weka.classifiers.functions.Logistic -R 1.0E-8 -M -1" />
|
---|
41 | * }
|
---|
42 | * </pre>
|
---|
43 | *
|
---|
44 | */
|
---|
45 | public class WekaTraining extends WekaBaseTraining implements ITrainingStrategy {
|
---|
46 |
|
---|
47 | @Override
|
---|
48 | public void apply(Instances traindata) {
|
---|
49 | classifier = setupClassifier();
|
---|
50 | PrintStream errStr = System.err;
|
---|
51 | System.setErr(new PrintStream(new NullOutputStream()));
|
---|
52 | try {
|
---|
53 | if (classifier == null) {
|
---|
54 | Console.traceln(Level.WARNING, String.format("classifier null!"));
|
---|
55 | }
|
---|
56 | classifier.buildClassifier(traindata);
|
---|
57 | }
|
---|
58 | catch (Exception e) {
|
---|
59 | if (e.getMessage().contains("Not enough training instances with class labels")) {
|
---|
60 | Console.traceln(Level.SEVERE,
|
---|
61 | "failure due to lack of instances: " + e.getMessage());
|
---|
62 | Console.traceln(Level.SEVERE, "training ZeroR classifier instead");
|
---|
63 | classifier = new ZeroR();
|
---|
64 | try {
|
---|
65 | classifier.buildClassifier(traindata);
|
---|
66 | }
|
---|
67 | catch (Exception e2) {
|
---|
68 | throw new RuntimeException(e2);
|
---|
69 | }
|
---|
70 | }
|
---|
71 | else {
|
---|
72 | throw new RuntimeException(e);
|
---|
73 | }
|
---|
74 | }
|
---|
75 | finally {
|
---|
76 | System.setErr(errStr);
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|