source: trunk/CrossPare/src/de/ugoe/cs/cpdp/util/WekaUtils.java @ 93

Last change on this file since 93 was 86, checked in by sherbold, 9 years ago
  • switched workspace encoding to UTF-8 and fixed broken characters
  • Property svn:mime-type set to text/plain
File size: 5.4 KB
Line 
1// Copyright 2015 Georg-August-Universität Göttingen, Germany
2//
3//   Licensed under the Apache License, Version 2.0 (the "License");
4//   you may not use this file except in compliance with the License.
5//   You may obtain a copy of the License at
6//
7//       http://www.apache.org/licenses/LICENSE-2.0
8//
9//   Unless required by applicable law or agreed to in writing, software
10//   distributed under the License is distributed on an "AS IS" BASIS,
11//   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12//   See the License for the specific language governing permissions and
13//   limitations under the License.
14
15package de.ugoe.cs.cpdp.util;
16
17// TODO comment
18import org.apache.commons.math3.ml.distance.EuclideanDistance;
19
20import weka.core.Instance;
21import weka.core.Instances;
22
23public class WekaUtils {
24
25    public static class DistChar {
26        public final double mean;
27        public final double std;
28        public final double min;
29        public final double max;
30        public final int num;
31        private DistChar(double mean, double std, double min, double max, int num) {
32            this.mean = mean;
33            this.std = std;
34            this.min = min;
35            this.max = max;
36            this.num = num;
37        }
38    }
39   
40    /**
41     * <p>
42     * Adoption of the Hamming difference to numerical values, i.e., basically a count of different
43     * metric values.
44     * </p>
45     *
46     * @param inst1
47     *            first instance to be compared
48     * @param inst2
49     *            second instance to be compared
50     * @return the distance
51     */
52    public static double hammingDistance(Instance inst1, Instance inst2) {
53        double distance = 0.0;
54        for (int j = 0; j < inst1.numAttributes(); j++) {
55            if (j != inst1.classIndex()) {
56                if (inst1.value(j) != inst2.value(j)) {
57                    distance += 1.0;
58                }
59            }
60        }
61        return distance;
62    }
63   
64    public static double[] instanceValues(Instance instance) {
65        double[] values = new double[instance.numAttributes()-1];
66        int k=0;
67        for( int j=0; j<instance.numAttributes() ; j++ ) {
68            if( j!= instance.classIndex() ) {
69                values[k] = instance.value(j);
70                k++;
71            }
72        }
73        return values;
74    }
75   
76    public static DistChar datasetDistance(Instances data) {
77        double distance;
78        double sumAll = 0.0;
79        double sumAllQ = 0.0;
80        double min = Double.MAX_VALUE;
81        double max = Double.MIN_VALUE;
82        int numCmp = 0;
83        int l = 0;
84        double[] inst1 = new double[data.numAttributes()-1];
85        double[] inst2 = new double[data.numAttributes()-1];
86        EuclideanDistance euclideanDistance = new EuclideanDistance();
87        for( int i=0; i<data.numInstances(); i++ ) {
88            l=0;
89            for( int k=0; k<data.numAttributes(); k++ ) {
90                if( k!=data.classIndex() ) {
91                    inst1[l] = data.instance(i).value(k);
92                }
93            }
94            for( int j=0; j<data.numInstances(); j++ ) {
95                if( j!=i ) {
96                    l=0;
97                    for( int k=0; k<data.numAttributes(); k++ ) {
98                        if( k!=data.classIndex() ) {
99                            inst2[l] = data.instance(j).value(k);
100                        }
101                    }
102                    distance = euclideanDistance.compute(inst1, inst2);
103                    sumAll += distance;
104                    sumAllQ += distance*distance;
105                    numCmp++;
106                    if( distance < min ) {
107                        min = distance;
108                    }
109                    if( distance > max ) {
110                        max = distance;
111                    }
112                }
113            }
114        }
115        double mean = sumAll / numCmp;
116        double std = Math.sqrt((sumAllQ-(sumAll*sumAll)/numCmp) *
117                                  (1.0d / (numCmp - 1)));
118        return new DistChar(mean, std, min, max, data.numInstances());
119    }
120   
121    // like above, but for single attribute
122    public static DistChar attributeDistance(Instances data, int index) {
123        double distance;
124        double sumAll = 0.0;
125        double sumAllQ = 0.0;
126        double min = Double.MAX_VALUE;
127        double max = Double.MIN_VALUE;
128        int numCmp = 0;
129        double value1, value2;
130        for( int i=0; i<data.numInstances(); i++ ) {
131            value1 = data.instance(i).value(index);
132            for( int j=0; j<data.numInstances(); j++ ) {
133                if( j!=i ) {
134                    value2 = data.instance(j).value(index);
135                    distance = Math.abs(value1-value2);
136                    sumAll += distance;
137                    sumAllQ += distance*distance;
138                    numCmp++;
139                    if( distance < min ) {
140                        min = distance;
141                    }
142                    if( distance > max ) {
143                        max = distance;
144                    }
145                }
146            }
147        }
148        double mean = sumAll / numCmp;
149        double std = Math.sqrt((sumAllQ-(sumAll*sumAll)/numCmp) *
150                                  (1.0d / (numCmp - 1)));
151        return new DistChar(mean, std, min, max, data.numInstances());
152    }
153}
Note: See TracBrowser for help on using the repository browser.