1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.wekaclassifier;
|
---|
16 |
|
---|
17 | import java.util.ArrayList;
|
---|
18 | import java.util.HashMap;
|
---|
19 | import java.util.List;
|
---|
20 | import java.util.Map;
|
---|
21 | import java.util.logging.Level;
|
---|
22 | import java.util.regex.Matcher;
|
---|
23 | import java.util.regex.Pattern;
|
---|
24 |
|
---|
25 | import de.ugoe.cs.cpdp.util.WekaUtils;
|
---|
26 | import de.ugoe.cs.util.console.Console;
|
---|
27 | import weka.classifiers.AbstractClassifier;
|
---|
28 | import weka.classifiers.Classifier;
|
---|
29 | import weka.classifiers.bayes.BayesNet;
|
---|
30 | import weka.classifiers.functions.Logistic;
|
---|
31 | import weka.classifiers.functions.MultilayerPerceptron;
|
---|
32 | import weka.classifiers.functions.RBFNetwork;
|
---|
33 | import weka.classifiers.rules.DecisionTable;
|
---|
34 | import weka.classifiers.trees.ADTree;
|
---|
35 | import weka.core.Attribute;
|
---|
36 | import weka.core.DenseInstance;
|
---|
37 | import weka.core.Instance;
|
---|
38 | import weka.core.Instances;
|
---|
39 |
|
---|
40 | /**
|
---|
41 | * <p>
|
---|
42 | * Implements CODEP proposed by Panichella et al. (2014).
|
---|
43 | * </p>
|
---|
44 | *
|
---|
45 | * @author Steffen Herbold
|
---|
46 | */
|
---|
47 | public abstract class AbstractCODEP extends AbstractClassifier {
|
---|
48 |
|
---|
49 | /**
|
---|
50 | * Default serialization ID.
|
---|
51 | */
|
---|
52 | private static final long serialVersionUID = 1L;
|
---|
53 |
|
---|
54 | /**
|
---|
55 | * List of classifiers that is internally used.
|
---|
56 | */
|
---|
57 | private List<Classifier> internalClassifiers = null;
|
---|
58 |
|
---|
59 | /**
|
---|
60 | * List of attributes that is internally used.
|
---|
61 | */
|
---|
62 | private ArrayList<Attribute> internalAttributes = null;
|
---|
63 |
|
---|
64 | /**
|
---|
65 | * Trained CODEP classifier.
|
---|
66 | */
|
---|
67 | private Classifier codepClassifier = null;
|
---|
68 |
|
---|
69 | /**
|
---|
70 | * Map that store attributes for upscaling for each classifier
|
---|
71 | */
|
---|
72 | private Map<Integer, Integer> upscaleIndex = null;
|
---|
73 |
|
---|
74 | /*
|
---|
75 | * (non-Javadoc)
|
---|
76 | *
|
---|
77 | * @see weka.classifiers.AbstractClassifier#classifyInstance(weka.core.Instance)
|
---|
78 | */
|
---|
79 | @Override
|
---|
80 | public double classifyInstance(Instance instance) throws Exception {
|
---|
81 | if (codepClassifier == null) {
|
---|
82 | throw new RuntimeException("classifier must be trained first, call to buildClassifier missing");
|
---|
83 | }
|
---|
84 | Instances tmp = new Instances("tmp", internalAttributes, 1);
|
---|
85 | tmp.setClass(internalAttributes.get(internalAttributes.size() - 1));
|
---|
86 | tmp.add(createInternalInstance(instance));
|
---|
87 | return codepClassifier.classifyInstance(tmp.firstInstance());
|
---|
88 | }
|
---|
89 |
|
---|
90 | /*
|
---|
91 | * (non-Javadoc)
|
---|
92 | *
|
---|
93 | * @see weka.classifiers.Classifier#buildClassifier(weka.core.Instances)
|
---|
94 | */
|
---|
95 | @Override
|
---|
96 | public void buildClassifier(Instances traindata) throws Exception {
|
---|
97 | setupInternalClassifiers();
|
---|
98 | setupInternalAttributes();
|
---|
99 | upscaleIndex = new HashMap<>();
|
---|
100 |
|
---|
101 | int classifierIndex = 0;
|
---|
102 | boolean secondAttempt = false;
|
---|
103 | Instances traindataCopy = null;
|
---|
104 | for (Classifier classifier : internalClassifiers) {
|
---|
105 | boolean trainingSuccessfull = false;
|
---|
106 | do {
|
---|
107 | Console.traceln(Level.FINE,
|
---|
108 | "internally training " + classifier.getClass().getName());
|
---|
109 | try {
|
---|
110 | if (secondAttempt) {
|
---|
111 | classifier.buildClassifier(traindataCopy);
|
---|
112 | trainingSuccessfull = true;
|
---|
113 | }
|
---|
114 | else {
|
---|
115 | classifier.buildClassifier(traindata);
|
---|
116 | trainingSuccessfull = true;
|
---|
117 | }
|
---|
118 | }
|
---|
119 | catch (IllegalArgumentException e) {
|
---|
120 | String regex = "A nominal attribute \\((.*)\\) cannot have duplicate labels.*";
|
---|
121 | Pattern p = Pattern.compile(regex);
|
---|
122 | Matcher m = p.matcher(e.getMessage());
|
---|
123 | if (!m.find()) {
|
---|
124 | // cannot treat problem, rethrow exception
|
---|
125 | throw e;
|
---|
126 | }
|
---|
127 | String attributeName = m.group(1);
|
---|
128 | int attrIndex = traindata.attribute(attributeName).index();
|
---|
129 | if (secondAttempt) {
|
---|
130 | throw new RuntimeException("cannot be handled correctly yet, because upscaleIndex is a Map");
|
---|
131 | // traindataCopy = upscaleAttribute(traindataCopy, attrIndex);
|
---|
132 | }
|
---|
133 | else {
|
---|
134 | traindataCopy = WekaUtils.upscaleAttribute(traindata, attrIndex);
|
---|
135 | }
|
---|
136 |
|
---|
137 | upscaleIndex.put(classifierIndex, attrIndex);
|
---|
138 | Console
|
---|
139 | .traceln(Level.FINE,
|
---|
140 | "upscaled attribute " + attributeName + "; restarting training");
|
---|
141 | secondAttempt = true;
|
---|
142 | continue;
|
---|
143 | }
|
---|
144 | }
|
---|
145 | while (!trainingSuccessfull); // dummy loop for internal continue
|
---|
146 | classifierIndex++;
|
---|
147 | secondAttempt = false;
|
---|
148 | }
|
---|
149 |
|
---|
150 | Instances internalTraindata =
|
---|
151 | new Instances("internal instances", internalAttributes, traindata.size());
|
---|
152 | internalTraindata.setClass(internalAttributes.get(internalAttributes.size() - 1));
|
---|
153 |
|
---|
154 | for (Instance instance : traindata) {
|
---|
155 | internalTraindata.add(createInternalInstance(instance));
|
---|
156 | }
|
---|
157 |
|
---|
158 | codepClassifier = getCodepClassifier();
|
---|
159 | codepClassifier.buildClassifier(internalTraindata);
|
---|
160 | }
|
---|
161 |
|
---|
162 | /**
|
---|
163 | * <p>
|
---|
164 | * Creates a CODEP instance using the classifications of the internal classifiers.
|
---|
165 | * </p>
|
---|
166 | *
|
---|
167 | * @param instance
|
---|
168 | * instance for which the CODEP instance is created
|
---|
169 | * @return CODEP instance
|
---|
170 | * @throws Exception
|
---|
171 | * thrown if an exception occurs during classification with an internal classifier
|
---|
172 | */
|
---|
173 | private Instance createInternalInstance(Instance instance) throws Exception {
|
---|
174 | double[] values = new double[internalAttributes.size()];
|
---|
175 | Instances traindataCopy;
|
---|
176 | for (int j = 0; j < internalClassifiers.size(); j++) {
|
---|
177 | if (upscaleIndex.containsKey(j)) {
|
---|
178 | // instance value must be upscaled
|
---|
179 | int attrIndex = upscaleIndex.get(j);
|
---|
180 | double upscaledVal = instance.value(attrIndex) * WekaUtils.SCALER;
|
---|
181 | traindataCopy = new Instances(instance.dataset());
|
---|
182 | instance = new DenseInstance(instance.weight(), instance.toDoubleArray());
|
---|
183 | instance.setValue(attrIndex, upscaledVal);
|
---|
184 | traindataCopy.add(instance);
|
---|
185 | instance.setDataset(traindataCopy);
|
---|
186 | }
|
---|
187 | values[j] = internalClassifiers.get(j).classifyInstance(instance);
|
---|
188 | }
|
---|
189 | values[internalAttributes.size() - 1] = instance.classValue();
|
---|
190 | return new DenseInstance(1.0, values);
|
---|
191 | }
|
---|
192 |
|
---|
193 | /**
|
---|
194 | * <p>
|
---|
195 | * Sets up the attributes array.
|
---|
196 | * </p>
|
---|
197 | */
|
---|
198 | private void setupInternalAttributes() {
|
---|
199 | internalAttributes = new ArrayList<>();
|
---|
200 | for (Classifier classifier : internalClassifiers) {
|
---|
201 | internalAttributes.add(new Attribute(classifier.getClass().getName()));
|
---|
202 | }
|
---|
203 | final ArrayList<String> classAttVals = new ArrayList<String>();
|
---|
204 | classAttVals.add("0");
|
---|
205 | classAttVals.add("1");
|
---|
206 | final Attribute classAtt = new Attribute("bug", classAttVals);
|
---|
207 | internalAttributes.add(classAtt);
|
---|
208 | }
|
---|
209 |
|
---|
210 | /**
|
---|
211 | * <p>
|
---|
212 | * Sets up the classifier array.
|
---|
213 | * </p>
|
---|
214 | */
|
---|
215 | private void setupInternalClassifiers() {
|
---|
216 | internalClassifiers = new ArrayList<>(6);
|
---|
217 | // create training data with prediction labels
|
---|
218 |
|
---|
219 | internalClassifiers.add(new ADTree());
|
---|
220 | internalClassifiers.add(new BayesNet());
|
---|
221 | internalClassifiers.add(new DecisionTable());
|
---|
222 | internalClassifiers.add(new Logistic());
|
---|
223 | internalClassifiers.add(new MultilayerPerceptron());
|
---|
224 | internalClassifiers.add(new RBFNetwork());
|
---|
225 | }
|
---|
226 |
|
---|
227 | /**
|
---|
228 | * <p>
|
---|
229 | * Abstract method through which implementing classes define which classifier is used for the
|
---|
230 | * CODEP.
|
---|
231 | * </p>
|
---|
232 | *
|
---|
233 | * @return classifier for CODEP
|
---|
234 | */
|
---|
235 | abstract protected Classifier getCodepClassifier();
|
---|
236 | }
|
---|