1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.wekaclassifier;
|
---|
16 |
|
---|
17 | import java.util.Iterator;
|
---|
18 | import java.util.LinkedList;
|
---|
19 | import java.util.List;
|
---|
20 |
|
---|
21 | import weka.classifiers.AbstractClassifier;
|
---|
22 | import weka.classifiers.Classifier;
|
---|
23 | import weka.classifiers.Evaluation;
|
---|
24 | import weka.classifiers.functions.Logistic;
|
---|
25 | import weka.core.DenseInstance;
|
---|
26 | import weka.core.Instance;
|
---|
27 | import weka.core.Instances;
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * Logistic Ensemble Classifier after Uchigaki et al. with some assumptions. It is unclear if these
|
---|
31 | * assumptions are true.
|
---|
32 | *
|
---|
33 | * @author Steffen Herbold
|
---|
34 | */
|
---|
35 | public class LogisticEnsemble extends AbstractClassifier {
|
---|
36 |
|
---|
37 | /**
|
---|
38 | * default id
|
---|
39 | */
|
---|
40 | private static final long serialVersionUID = 1L;
|
---|
41 |
|
---|
42 | /**
|
---|
43 | * list with classifiers
|
---|
44 | */
|
---|
45 | private List<Classifier> classifiers = null;
|
---|
46 |
|
---|
47 | /**
|
---|
48 | * list with weights for each classifier
|
---|
49 | */
|
---|
50 | private List<Double> weights = null;
|
---|
51 |
|
---|
52 | /**
|
---|
53 | * local copy of the options to be passed to the ensemble of logistic classifiers
|
---|
54 | */
|
---|
55 | private String[] options;
|
---|
56 |
|
---|
57 | /*
|
---|
58 | * (non-Javadoc)
|
---|
59 | *
|
---|
60 | * @see weka.classifiers.AbstractClassifier#setOptions(java.lang.String[])
|
---|
61 | */
|
---|
62 | @Override
|
---|
63 | public void setOptions(String[] options) throws Exception {
|
---|
64 | this.options = options;
|
---|
65 | }
|
---|
66 |
|
---|
67 | /*
|
---|
68 | * (non-Javadoc)
|
---|
69 | *
|
---|
70 | * @see weka.classifiers.AbstractClassifier#distributionForInstance(weka.core.Instance)
|
---|
71 | */
|
---|
72 | @Override
|
---|
73 | public double[] distributionForInstance(Instance instance) throws Exception {
|
---|
74 | Iterator<Classifier> classifierIter = classifiers.iterator();
|
---|
75 | Iterator<Double> weightIter = weights.iterator();
|
---|
76 | double[] result = new double[2];
|
---|
77 | while (classifierIter.hasNext()) {
|
---|
78 | for (int j = 0; j < instance.numAttributes(); j++) {
|
---|
79 | if (j != instance.classIndex()) {
|
---|
80 | Instance copy = new DenseInstance(instance);
|
---|
81 | for (int k = instance.numAttributes() - 1; k >= 0; k--) {
|
---|
82 | if (j != k && k != instance.classIndex()) {
|
---|
83 | copy.deleteAttributeAt(k);
|
---|
84 | }
|
---|
85 | }
|
---|
86 | double[] localResult = classifierIter.next().distributionForInstance(copy);
|
---|
87 | double currentWeight = weightIter.next();
|
---|
88 | for (int i = 0; i < localResult.length; i++) {
|
---|
89 | result[i] = result[i] + localResult[i] * currentWeight;
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|
93 | }
|
---|
94 | return result;
|
---|
95 | }
|
---|
96 |
|
---|
97 | /*
|
---|
98 | * (non-Javadoc)
|
---|
99 | *
|
---|
100 | * @see weka.classifiers.Classifier#buildClassifier(weka.core.Instances)
|
---|
101 | */
|
---|
102 | @Override
|
---|
103 | public void buildClassifier(Instances traindata) throws Exception {
|
---|
104 | classifiers = new LinkedList<>();
|
---|
105 | weights = new LinkedList<>();
|
---|
106 | List<Double> weightsTmp = new LinkedList<>();
|
---|
107 | double sumWeights = 0.0;
|
---|
108 | for (int j = 0; j < traindata.numAttributes(); j++) {
|
---|
109 | if (j != traindata.classIndex()) {
|
---|
110 | final Logistic classifier = new Logistic();
|
---|
111 | classifier.setOptions(options);
|
---|
112 | final Instances copy = new Instances(traindata);
|
---|
113 | for (int k = traindata.numAttributes() - 1; k >= 0; k--) {
|
---|
114 | if (j != k && k != traindata.classIndex()) {
|
---|
115 | copy.deleteAttributeAt(k);
|
---|
116 | }
|
---|
117 | }
|
---|
118 | classifier.buildClassifier(copy);
|
---|
119 | classifiers.add(classifier);
|
---|
120 | Evaluation eval = new Evaluation(copy);
|
---|
121 | eval.evaluateModel(classifier, copy);
|
---|
122 | weightsTmp.add(eval.matthewsCorrelationCoefficient(1));
|
---|
123 | sumWeights += eval.matthewsCorrelationCoefficient(1);
|
---|
124 | }
|
---|
125 | }
|
---|
126 | for (double tmp : weightsTmp) {
|
---|
127 | weights.add(tmp / sumWeights);
|
---|
128 | }
|
---|
129 | }
|
---|
130 | }
|
---|