| 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
|---|
| 2 | //
|
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
|---|
| 4 | // you may not use this file except in compliance with the License.
|
|---|
| 5 | // You may obtain a copy of the License at
|
|---|
| 6 | //
|
|---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
|---|
| 8 | //
|
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|---|
| 12 | // See the License for the specific language governing permissions and
|
|---|
| 13 | // limitations under the License.
|
|---|
| 14 |
|
|---|
| 15 | package de.ugoe.cs.cpdp.wekaclassifier;
|
|---|
| 16 |
|
|---|
| 17 | import java.util.Iterator;
|
|---|
| 18 | import java.util.LinkedList;
|
|---|
| 19 | import java.util.List;
|
|---|
| 20 | import java.util.Random;
|
|---|
| 21 | import java.util.stream.IntStream;
|
|---|
| 22 |
|
|---|
| 23 | import de.lmu.ifi.dbs.elki.logging.Logging.Level;
|
|---|
| 24 | import de.ugoe.cs.cpdp.util.SortUtils;
|
|---|
| 25 | import de.ugoe.cs.util.console.Console;
|
|---|
| 26 | import weka.classifiers.AbstractClassifier;
|
|---|
| 27 | import weka.classifiers.Classifier;
|
|---|
| 28 | import weka.classifiers.Evaluation;
|
|---|
| 29 | import weka.classifiers.functions.SMO;
|
|---|
| 30 | import weka.core.Capabilities;
|
|---|
| 31 | import weka.core.Instance;
|
|---|
| 32 | import weka.core.Instances;
|
|---|
| 33 | import weka.core.Utils;
|
|---|
| 34 | import weka.filters.Filter;
|
|---|
| 35 | import weka.filters.supervised.instance.Resample;
|
|---|
| 36 |
|
|---|
| 37 | /**
|
|---|
| 38 | * <p>
|
|---|
| 39 | * VCBSVM after Ryu et al. (2014)
|
|---|
| 40 | * </p>
|
|---|
| 41 | *
|
|---|
| 42 | * @author Steffen Herbold
|
|---|
| 43 | */
|
|---|
| 44 | public class VCBSVM extends AbstractClassifier implements ITestAwareClassifier {
|
|---|
| 45 |
|
|---|
| 46 | /**
|
|---|
| 47 | * Default id
|
|---|
| 48 | */
|
|---|
| 49 | private static final long serialVersionUID = 1L;
|
|---|
| 50 |
|
|---|
| 51 | /**
|
|---|
| 52 | * Test data. CLASSIFICATION MUST BE IGNORED!
|
|---|
| 53 | */
|
|---|
| 54 | private Instances testdata = null;
|
|---|
| 55 |
|
|---|
| 56 | /**
|
|---|
| 57 | * Number of boosting iterations
|
|---|
| 58 | */
|
|---|
| 59 | private int boostingIterations = 5;
|
|---|
| 60 |
|
|---|
| 61 | /**
|
|---|
| 62 | * Penalty parameter lamda
|
|---|
| 63 | */
|
|---|
| 64 | private double lamda = 0.5;
|
|---|
| 65 |
|
|---|
| 66 | /**
|
|---|
| 67 | * Classifier trained in each boosting iteration
|
|---|
| 68 | */
|
|---|
| 69 | private List<Classifier> boostingClassifiers;
|
|---|
| 70 |
|
|---|
| 71 | /**
|
|---|
| 72 | * Weights for each boosting iteration
|
|---|
| 73 | */
|
|---|
| 74 | private List<Double> classifierWeights;
|
|---|
| 75 |
|
|---|
| 76 | /*
|
|---|
| 77 | * (non-Javadoc)
|
|---|
| 78 | *
|
|---|
| 79 | * @see weka.classifiers.AbstractClassifier#getCapabilities()
|
|---|
| 80 | */
|
|---|
| 81 | @Override
|
|---|
| 82 | public Capabilities getCapabilities() {
|
|---|
| 83 | return new SMO().getCapabilities();
|
|---|
| 84 | }
|
|---|
| 85 |
|
|---|
| 86 | /*
|
|---|
| 87 | * (non-Javadoc)
|
|---|
| 88 | *
|
|---|
| 89 | * @see weka.classifiers.AbstractClassifier#setOptions(java.lang.String[])
|
|---|
| 90 | */
|
|---|
| 91 | @Override
|
|---|
| 92 | public void setOptions(String[] options) throws Exception {
|
|---|
| 93 | String lamdaString = Utils.getOption('L', options);
|
|---|
| 94 | String boostingIterString = Utils.getOption('B', options);
|
|---|
| 95 | if (!boostingIterString.isEmpty()) {
|
|---|
| 96 | boostingIterations = Integer.parseInt(boostingIterString);
|
|---|
| 97 | }
|
|---|
| 98 | if (!lamdaString.isEmpty()) {
|
|---|
| 99 | lamda = Double.parseDouble(lamdaString);
|
|---|
| 100 | }
|
|---|
| 101 | }
|
|---|
| 102 |
|
|---|
| 103 | /*
|
|---|
| 104 | * (non-Javadoc)
|
|---|
| 105 | *
|
|---|
| 106 | * @see de.ugoe.cs.cpdp.wekaclassifier.ITestAwareClassifier#setTestdata(weka.core.Instances)
|
|---|
| 107 | */
|
|---|
| 108 | @Override
|
|---|
| 109 | public void setTestdata(Instances testdata) {
|
|---|
| 110 | this.testdata = testdata;
|
|---|
| 111 | }
|
|---|
| 112 |
|
|---|
| 113 | /*
|
|---|
| 114 | * (non-Javadoc)
|
|---|
| 115 | *
|
|---|
| 116 | * @see weka.classifiers.AbstractClassifier#classifyInstance(weka.core.Instance)
|
|---|
| 117 | */
|
|---|
| 118 | @Override
|
|---|
| 119 | public double classifyInstance(Instance instance) throws Exception {
|
|---|
| 120 | double classification = 0.0;
|
|---|
| 121 | Iterator<Classifier> classifierIter = boostingClassifiers.iterator();
|
|---|
| 122 | Iterator<Double> weightIter = classifierWeights.iterator();
|
|---|
| 123 | while (classifierIter.hasNext()) {
|
|---|
| 124 | Classifier classifier = classifierIter.next();
|
|---|
| 125 | Double weight = weightIter.next();
|
|---|
| 126 | if (classifier.classifyInstance(instance) > 0.5d) {
|
|---|
| 127 | classification += weight;
|
|---|
| 128 | }
|
|---|
| 129 | else {
|
|---|
| 130 | classification -= weight;
|
|---|
| 131 | }
|
|---|
| 132 | }
|
|---|
| 133 | return classification >= 0 ? 1.0d : 0.0d;
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 | /*
|
|---|
| 137 | * (non-Javadoc)
|
|---|
| 138 | *
|
|---|
| 139 | * @see weka.classifiers.Classifier#buildClassifier(weka.core.Instances)
|
|---|
| 140 | */
|
|---|
| 141 | @Override
|
|---|
| 142 | public void buildClassifier(Instances data) throws Exception {
|
|---|
| 143 | // get validation set
|
|---|
| 144 | Resample resample = new Resample();
|
|---|
| 145 | resample.setSampleSizePercent(50);
|
|---|
| 146 | Instances validationCandidates;
|
|---|
| 147 | try {
|
|---|
| 148 | resample.setInputFormat(data);
|
|---|
| 149 | validationCandidates = Filter.useFilter(data, resample);
|
|---|
| 150 | }
|
|---|
| 151 | catch (Exception e) {
|
|---|
| 152 | Console.traceln(Level.SEVERE, "failure during validation set selection of VCBSVM");
|
|---|
| 153 | throw new RuntimeException(e);
|
|---|
| 154 | }
|
|---|
| 155 | Double[] validationCandidateWeights = calculateSimilarityWeights(validationCandidates);
|
|---|
| 156 | int[] indexSet = new int[validationCandidateWeights.length];
|
|---|
| 157 | IntStream.range(0, indexSet.length).forEach(val -> indexSet[val] = val);
|
|---|
| 158 | SortUtils.quicksort(validationCandidateWeights, indexSet, true);
|
|---|
| 159 | Instances validationdata = new Instances(validationCandidates);
|
|---|
| 160 | validationdata.clear();
|
|---|
| 161 | int numValidationInstances = (int) Math.ceil(indexSet.length * 0.2);
|
|---|
| 162 | for (int i = 0; i < numValidationInstances; i++) {
|
|---|
| 163 | validationdata.add(validationCandidates.get(indexSet[i]));
|
|---|
| 164 | }
|
|---|
| 165 |
|
|---|
| 166 | // setup training data (data-validationdata)
|
|---|
| 167 | Instances traindata = new Instances(data);
|
|---|
| 168 | traindata.removeAll(validationdata);
|
|---|
| 169 | Double[] similarityWeights = calculateSimilarityWeights(traindata);
|
|---|
| 170 |
|
|---|
| 171 | double[] boostingWeights = new double[traindata.size()];
|
|---|
| 172 | for (int i = 0; i < boostingWeights.length; i++) {
|
|---|
| 173 | boostingWeights[i] = 1.0d;
|
|---|
| 174 | }
|
|---|
| 175 | double bestAuc = 0.0;
|
|---|
| 176 | boostingClassifiers = new LinkedList<>();
|
|---|
| 177 | classifierWeights = new LinkedList<>();
|
|---|
| 178 | for (int boostingIter = 0; boostingIter < boostingIterations; boostingIter++) {
|
|---|
| 179 | for (int i = 0; i < boostingWeights.length; i++) {
|
|---|
| 180 | traindata.get(i).setWeight(boostingWeights[i]);
|
|---|
| 181 | }
|
|---|
| 182 |
|
|---|
| 183 | Instances traindataCurrentLoop;
|
|---|
| 184 | if (boostingIter > 0) {
|
|---|
| 185 | traindataCurrentLoop = sampleData(traindata, similarityWeights);
|
|---|
| 186 | }
|
|---|
| 187 | else {
|
|---|
| 188 | traindataCurrentLoop = traindata;
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | SMO internalClassifier = new SMO();
|
|---|
| 192 | internalClassifier.buildClassifier(traindataCurrentLoop);
|
|---|
| 193 |
|
|---|
| 194 | double sumWeightedMisclassifications = 0.0d;
|
|---|
| 195 | double sumWeights = 0.0d;
|
|---|
| 196 | for (int i = 0; i < traindataCurrentLoop.size(); i++) {
|
|---|
| 197 | Instance inst = traindataCurrentLoop.get(i);
|
|---|
| 198 | if (inst.classValue() != internalClassifier.classifyInstance(inst)) {
|
|---|
| 199 | sumWeightedMisclassifications += inst.weight();
|
|---|
| 200 | }
|
|---|
| 201 | sumWeights += inst.weight();
|
|---|
| 202 | }
|
|---|
| 203 | double epsilon = sumWeightedMisclassifications / sumWeights;
|
|---|
| 204 | double alpha = lamda * Math.log((1.0d - epsilon) / epsilon);
|
|---|
| 205 | for (int i = 0; i < traindata.size(); i++) {
|
|---|
| 206 | Instance inst = traindata.get(i);
|
|---|
| 207 | if (inst.classValue() != internalClassifier.classifyInstance(inst)) {
|
|---|
| 208 | boostingWeights[i] *= boostingWeights[i] * Math.exp(alpha);
|
|---|
| 209 | }
|
|---|
| 210 | else {
|
|---|
| 211 | boostingWeights[i] *= boostingWeights[i] * Math.exp(-alpha);
|
|---|
| 212 | }
|
|---|
| 213 | }
|
|---|
| 214 | classifierWeights.add(alpha);
|
|---|
| 215 | boostingClassifiers.add(internalClassifier);
|
|---|
| 216 |
|
|---|
| 217 | final Evaluation eval = new Evaluation(validationdata);
|
|---|
| 218 | eval.evaluateModel(this, validationdata);
|
|---|
| 219 | double currentAuc = eval.areaUnderROC(1);
|
|---|
| 220 | final Evaluation eval2 = new Evaluation(validationdata);
|
|---|
| 221 | eval2.evaluateModel(internalClassifier, validationdata);
|
|---|
| 222 |
|
|---|
| 223 | if (currentAuc >= bestAuc) {
|
|---|
| 224 | bestAuc = currentAuc;
|
|---|
| 225 | }
|
|---|
| 226 | else {
|
|---|
| 227 | // performance drop, abort boosting, classifier of current iteration is dropped
|
|---|
| 228 | Console.traceln(Level.INFO, "no gain for boosting iteration " + (boostingIter + 1) +
|
|---|
| 229 | "; aborting boosting");
|
|---|
| 230 | classifierWeights.remove(classifierWeights.size() - 1);
|
|---|
| 231 | boostingClassifiers.remove(boostingClassifiers.size() - 1);
|
|---|
| 232 | return;
|
|---|
| 233 | }
|
|---|
| 234 | }
|
|---|
| 235 | }
|
|---|
| 236 |
|
|---|
| 237 | /**
|
|---|
| 238 | * <p>
|
|---|
| 239 | * Calculates the similarity weights for the training data
|
|---|
| 240 | * </p>
|
|---|
| 241 | *
|
|---|
| 242 | * @param data
|
|---|
| 243 | * training data
|
|---|
| 244 | * @return vector with similarity weights
|
|---|
| 245 | */
|
|---|
| 246 | private Double[] calculateSimilarityWeights(Instances data) {
|
|---|
| 247 | double[] minAttValues = new double[data.numAttributes()];
|
|---|
| 248 | double[] maxAttValues = new double[data.numAttributes()];
|
|---|
| 249 | Double[] weights = new Double[data.numInstances()];
|
|---|
| 250 |
|
|---|
| 251 | for (int j = 0; j < data.numAttributes(); j++) {
|
|---|
| 252 | if (j != data.classIndex()) {
|
|---|
| 253 | minAttValues[j] = testdata.attributeStats(j).numericStats.min;
|
|---|
| 254 | maxAttValues[j] = testdata.attributeStats(j).numericStats.max;
|
|---|
| 255 | }
|
|---|
| 256 | }
|
|---|
| 257 |
|
|---|
| 258 | for (int i = 0; i < data.numInstances(); i++) {
|
|---|
| 259 | Instance inst = data.instance(i);
|
|---|
| 260 | int similar = 0;
|
|---|
| 261 | for (int j = 0; j < data.numAttributes(); j++) {
|
|---|
| 262 | if (j != data.classIndex()) {
|
|---|
| 263 | if (inst.value(j) >= minAttValues[j] && inst.value(j) <= maxAttValues[j]) {
|
|---|
| 264 | similar++;
|
|---|
| 265 | }
|
|---|
| 266 | }
|
|---|
| 267 | }
|
|---|
| 268 | weights[i] = similar / (data.numAttributes() - 1.0d);
|
|---|
| 269 | }
|
|---|
| 270 | return weights;
|
|---|
| 271 | }
|
|---|
| 272 |
|
|---|
| 273 | /**
|
|---|
| 274 | *
|
|---|
| 275 | * <p>
|
|---|
| 276 | * Samples data according to the similarity weights. This sampling
|
|---|
| 277 | * </p>
|
|---|
| 278 | *
|
|---|
| 279 | * @param data
|
|---|
| 280 | * @param similarityWeights
|
|---|
| 281 | * @return sampled data
|
|---|
| 282 | */
|
|---|
| 283 | private Instances sampleData(Instances data, Double[] similarityWeights) {
|
|---|
| 284 | // split data into four sets;
|
|---|
| 285 | Instances similarPositive = new Instances(data);
|
|---|
| 286 | similarPositive.clear();
|
|---|
| 287 | Instances similarNegative = new Instances(data);
|
|---|
| 288 | similarNegative.clear();
|
|---|
| 289 | Instances notsimiPositive = new Instances(data);
|
|---|
| 290 | notsimiPositive.clear();
|
|---|
| 291 | Instances notsimiNegative = new Instances(data);
|
|---|
| 292 | notsimiNegative.clear();
|
|---|
| 293 | for (int i = 0; i < data.numInstances(); i++) {
|
|---|
| 294 | if (data.get(i).classValue() == 1.0) {
|
|---|
| 295 | if (similarityWeights[i] == 1.0) {
|
|---|
| 296 | similarPositive.add(data.get(i));
|
|---|
| 297 | }
|
|---|
| 298 | else {
|
|---|
| 299 | notsimiPositive.add(data.get(i));
|
|---|
| 300 | }
|
|---|
| 301 | }
|
|---|
| 302 | else {
|
|---|
| 303 | if (similarityWeights[i] == 1.0) {
|
|---|
| 304 | similarNegative.add(data.get(i));
|
|---|
| 305 | }
|
|---|
| 306 | else {
|
|---|
| 307 | notsimiNegative.add(data.get(i));
|
|---|
| 308 | }
|
|---|
| 309 | }
|
|---|
| 310 | }
|
|---|
| 311 |
|
|---|
| 312 | int sampleSizes = (similarPositive.size() + notsimiPositive.size()) / 2;
|
|---|
| 313 |
|
|---|
| 314 | similarPositive = weightedResample(similarPositive, sampleSizes);
|
|---|
| 315 | notsimiPositive = weightedResample(notsimiPositive, sampleSizes);
|
|---|
| 316 | similarNegative = weightedResample(similarNegative, sampleSizes);
|
|---|
| 317 | notsimiNegative = weightedResample(notsimiNegative, sampleSizes);
|
|---|
| 318 | similarPositive.addAll(similarNegative);
|
|---|
| 319 | similarPositive.addAll(notsimiPositive);
|
|---|
| 320 | similarPositive.addAll(notsimiNegative);
|
|---|
| 321 | return similarPositive;
|
|---|
| 322 | }
|
|---|
| 323 |
|
|---|
| 324 | /**
|
|---|
| 325 | * <p>
|
|---|
| 326 | * This is just my interpretation of the resampling. Details are missing from the paper.
|
|---|
| 327 | * </p>
|
|---|
| 328 | *
|
|---|
| 329 | * @param data
|
|---|
| 330 | * data that is sampled
|
|---|
| 331 | * @param size
|
|---|
| 332 | * desired size of the sample
|
|---|
| 333 | * @return sampled data
|
|---|
| 334 | */
|
|---|
| 335 | private Instances weightedResample(final Instances data, final int size) {
|
|---|
| 336 | if( data.isEmpty() ) {
|
|---|
| 337 | return data;
|
|---|
| 338 | }
|
|---|
| 339 | final Instances resampledData = new Instances(data);
|
|---|
| 340 | resampledData.clear();
|
|---|
| 341 | double sumOfWeights = data.sumOfWeights();
|
|---|
| 342 | Random rand = new Random();
|
|---|
| 343 | while (resampledData.size() < size) {
|
|---|
| 344 | double randVal = rand.nextDouble() * sumOfWeights;
|
|---|
| 345 | double currentWeightSum = 0.0;
|
|---|
| 346 | for (int i = 0; i < data.size(); i++) {
|
|---|
| 347 | currentWeightSum += data.get(i).weight();
|
|---|
| 348 | if (currentWeightSum >= randVal) {
|
|---|
| 349 | resampledData.add(data.get(i));
|
|---|
| 350 | break;
|
|---|
| 351 | }
|
|---|
| 352 | }
|
|---|
| 353 | }
|
|---|
| 354 |
|
|---|
| 355 | return resampledData;
|
|---|
| 356 | }
|
|---|
| 357 | }
|
|---|