[126] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
| 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
| 15 | package de.ugoe.cs.cpdp.wekaclassifier;
|
---|
| 16 |
|
---|
| 17 | import java.util.ArrayList;
|
---|
| 18 | import java.util.Arrays;
|
---|
| 19 | import java.util.Collections;
|
---|
| 20 | import java.util.LinkedList;
|
---|
| 21 | import java.util.List;
|
---|
| 22 | import java.util.Random;
|
---|
| 23 | import java.util.logging.Level;
|
---|
| 24 |
|
---|
| 25 | import de.ugoe.cs.util.console.Console;
|
---|
| 26 | import weka.classifiers.AbstractClassifier;
|
---|
| 27 | import weka.core.Attribute;
|
---|
| 28 | import weka.core.Instance;
|
---|
| 29 | import weka.core.Instances;
|
---|
| 30 | import weka.filters.Filter;
|
---|
| 31 | import weka.filters.unsupervised.attribute.Discretize;
|
---|
| 32 |
|
---|
| 33 | /**
|
---|
| 34 | * <p>
|
---|
| 35 | * WHICH classifier after Menzies et al.
|
---|
| 36 | * </p>
|
---|
| 37 | *
|
---|
| 38 | * @author Steffen Herbold
|
---|
| 39 | */
|
---|
| 40 | public class WHICH extends AbstractClassifier {
|
---|
| 41 |
|
---|
| 42 | /**
|
---|
| 43 | * default id.
|
---|
| 44 | */
|
---|
| 45 | private static final long serialVersionUID = 1L;
|
---|
| 46 |
|
---|
| 47 | /**
|
---|
| 48 | * number of bins used for discretization of data
|
---|
| 49 | */
|
---|
| 50 | private int numBins = 7;
|
---|
| 51 |
|
---|
| 52 | /**
|
---|
| 53 | * number of new rules generate within each rule generation iteration
|
---|
| 54 | */
|
---|
| 55 | private final int numNewRules = 5;
|
---|
| 56 |
|
---|
| 57 | /**
|
---|
| 58 | * number of rule generation iterations
|
---|
| 59 | */
|
---|
| 60 | private final int newRuleIterations = 20;
|
---|
| 61 |
|
---|
| 62 | /**
|
---|
| 63 | * maximal number of tries to improve the best score
|
---|
| 64 | */
|
---|
| 65 | private final int maxIter = 100;
|
---|
| 66 |
|
---|
| 67 | /**
|
---|
| 68 | * best rule determined by the training, i.e., the classifier
|
---|
| 69 | */
|
---|
| 70 | private WhichRule bestRule = null;
|
---|
| 71 |
|
---|
| 72 | /*
|
---|
| 73 | * (non-Javadoc)
|
---|
| 74 | *
|
---|
| 75 | * @see weka.classifiers.Classifier#buildClassifier(weka.core.Instances)
|
---|
| 76 | */
|
---|
| 77 | @Override
|
---|
| 78 | public void buildClassifier(Instances traindata) throws Exception {
|
---|
| 79 | WhichStack whichStack = new WhichStack();
|
---|
| 80 | Discretize discretize = new Discretize();
|
---|
| 81 | discretize.setBins(numBins);
|
---|
| 82 | discretize.setIgnoreClass(true);
|
---|
| 83 | discretize.setInputFormat(traindata);
|
---|
| 84 | Instances discretizedData = Filter.useFilter(traindata, discretize);
|
---|
| 85 | // init WHICH stack
|
---|
| 86 | for (int j = 0; j < discretizedData.numAttributes(); j++) {
|
---|
| 87 | Attribute attr = discretizedData.attribute(j);
|
---|
| 88 | for (int k = 0; k < attr.numValues(); k++) {
|
---|
| 89 | // create rules for single variables
|
---|
| 90 | WhichRule rule = new WhichRule(Arrays.asList(new Integer[]
|
---|
| 91 | { j }), Arrays.asList(new Double[]
|
---|
| 92 | { (double) k }), Arrays.asList(new String[]
|
---|
| 93 | { attr.value(k) }));
|
---|
| 94 | rule.scoreRule(discretizedData);
|
---|
| 95 | whichStack.push(rule);
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | double curBestScore = whichStack.bestScore;
|
---|
| 99 | int iter = 0;
|
---|
| 100 | do {
|
---|
| 101 | // generate new rules
|
---|
| 102 | for (int i = 0; i < newRuleIterations; i++) {
|
---|
| 103 | whichStack.generateRules(numNewRules, discretizedData);
|
---|
| 104 | }
|
---|
| 105 | if (curBestScore >= whichStack.bestScore) {
|
---|
| 106 | // no improvement, terminate
|
---|
| 107 | break;
|
---|
| 108 | }
|
---|
| 109 | curBestScore = whichStack.bestScore;
|
---|
| 110 | iter++;
|
---|
| 111 | }
|
---|
| 112 | while (iter < maxIter);
|
---|
| 113 |
|
---|
| 114 | bestRule = whichStack.bestRule();
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | /*
|
---|
| 118 | * (non-Javadoc)
|
---|
| 119 | *
|
---|
| 120 | * @see weka.classifiers.AbstractClassifier#classifyInstance(weka.core.Instance)
|
---|
| 121 | */
|
---|
| 122 | @Override
|
---|
| 123 | public double classifyInstance(Instance instance) {
|
---|
| 124 | if (bestRule == null) {
|
---|
| 125 | throw new RuntimeException("you have to build the classifier first!");
|
---|
| 126 | }
|
---|
| 127 | return bestRule.applyRule(instance, false) ? 0.0 : 1.0;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | /**
|
---|
| 131 | * <p>
|
---|
| 132 | * Internal helper class to handle WHICH rules. The compareTo method is NOT consistent with the
|
---|
| 133 | * equals method!
|
---|
| 134 | * </p>
|
---|
| 135 | *
|
---|
| 136 | * @author Steffen Herbold
|
---|
| 137 | */
|
---|
| 138 | private class WhichRule implements Comparable<WhichRule> {
|
---|
| 139 | /**
|
---|
| 140 | * indizes of the attributes in the data to which the rule is applied
|
---|
| 141 | */
|
---|
| 142 | final List<Integer> attributeIndizes;
|
---|
| 143 |
|
---|
| 144 | /**
|
---|
| 145 | * index of the range for internal optimization during training
|
---|
| 146 | */
|
---|
| 147 | final List<Double> rangeIndizes;
|
---|
| 148 |
|
---|
| 149 | /**
|
---|
| 150 | * String of the range as created by Discretize.
|
---|
| 151 | */
|
---|
| 152 | final List<String> ranges;
|
---|
| 153 |
|
---|
| 154 | /**
|
---|
| 155 | * support of the rule
|
---|
| 156 | */
|
---|
| 157 | double support;
|
---|
| 158 |
|
---|
| 159 | /**
|
---|
| 160 | * percentage of the defective matches where the rule applies
|
---|
| 161 | */
|
---|
| 162 | double e1;
|
---|
| 163 |
|
---|
| 164 | /**
|
---|
| 165 | * percentage of the non-defective matches where the rule does not apply
|
---|
| 166 | */
|
---|
| 167 | double e2;
|
---|
| 168 |
|
---|
| 169 | /**
|
---|
| 170 | * score of the rule
|
---|
| 171 | */
|
---|
| 172 | double score;
|
---|
| 173 |
|
---|
| 174 | /**
|
---|
| 175 | * <p>
|
---|
| 176 | * Creates a new WhichRule.
|
---|
| 177 | * </p>
|
---|
| 178 | *
|
---|
| 179 | * @param attributeIndizes
|
---|
| 180 | * attribute indizes
|
---|
| 181 | * @param rangeIndizes
|
---|
| 182 | * range indizes
|
---|
| 183 | * @param ranges
|
---|
| 184 | * range strings
|
---|
| 185 | */
|
---|
| 186 | public WhichRule(List<Integer> attributeIndizes,
|
---|
| 187 | List<Double> rangeIndizes,
|
---|
| 188 | List<String> ranges)
|
---|
| 189 | {
|
---|
| 190 | this.attributeIndizes = attributeIndizes;
|
---|
| 191 | this.rangeIndizes = rangeIndizes;
|
---|
| 192 | this.ranges = ranges;
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 | /**
|
---|
| 196 | * <p>
|
---|
| 197 | * Combines two rules into a new rule
|
---|
| 198 | * </p>
|
---|
| 199 | *
|
---|
| 200 | * @param rule1
|
---|
| 201 | * first rule in combination
|
---|
| 202 | * @param rule2
|
---|
| 203 | * second rule in combination
|
---|
| 204 | */
|
---|
| 205 | public WhichRule(WhichRule rule1, WhichRule rule2) {
|
---|
| 206 | attributeIndizes = new ArrayList<>(rule1.attributeIndizes);
|
---|
| 207 | rangeIndizes = new ArrayList<>(rule1.rangeIndizes);
|
---|
| 208 | ranges = new ArrayList<>(rule1.ranges);
|
---|
| 209 | for (int k = 0; k < rule2.attributeIndizes.size(); k++) {
|
---|
| 210 | if (!attributeIndizes.contains(rule2.attributeIndizes.get(k))) {
|
---|
| 211 | attributeIndizes.add(rule2.attributeIndizes.get(k));
|
---|
| 212 | rangeIndizes.add(rule2.rangeIndizes.get(k));
|
---|
| 213 | ranges.add(rule2.ranges.get(k));
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 | /**
|
---|
| 219 | * <p>
|
---|
| 220 | * Determines the score of a rule.
|
---|
| 221 | * </p>
|
---|
| 222 | *
|
---|
| 223 | * @param traindata
|
---|
| 224 | */
|
---|
| 225 | public void scoreRule(Instances traindata) {
|
---|
| 226 | int numMatches = 0;
|
---|
| 227 | int numMatchDefective = 0;
|
---|
| 228 | int numMatchNondefective = 0;
|
---|
| 229 | @SuppressWarnings("unused")
|
---|
| 230 | int numNoMatchDefective = 0;
|
---|
| 231 | @SuppressWarnings("unused")
|
---|
| 232 | int numNoMatchNondefective = 0;
|
---|
| 233 | for (int i = 0; i < traindata.size(); i++) {
|
---|
| 234 | // check if rule applies
|
---|
| 235 | if (applyRule(traindata.get(i), true)) {
|
---|
| 236 | // to something
|
---|
| 237 | numMatches++;
|
---|
| 238 | if (traindata.get(i).classValue() == 1.0) {
|
---|
| 239 | numMatchDefective++;
|
---|
| 240 | }
|
---|
| 241 | else {
|
---|
| 242 | numMatchNondefective++;
|
---|
| 243 | }
|
---|
| 244 | }
|
---|
| 245 | else {
|
---|
| 246 | if (traindata.get(i).classValue() == 1.0) {
|
---|
| 247 | numNoMatchDefective++;
|
---|
| 248 | }
|
---|
| 249 | else {
|
---|
| 250 | numNoMatchNondefective++;
|
---|
| 251 | }
|
---|
| 252 | }
|
---|
| 253 | }
|
---|
| 254 | support = numMatches / ((double) traindata.size());
|
---|
| 255 | if (numMatches > 0) {
|
---|
[127] | 256 | e1 = numMatchNondefective / ((double) numMatches);
|
---|
| 257 | e2 = numMatchDefective / ((double) numMatches);
|
---|
[126] | 258 | if (e2 > 0) {
|
---|
| 259 | score = e1 / e2 * support;
|
---|
| 260 | }
|
---|
| 261 | else {
|
---|
| 262 | score = 0;
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 | else {
|
---|
| 266 | e1 = 0;
|
---|
| 267 | e2 = 0;
|
---|
| 268 | score = 0;
|
---|
| 269 | }
|
---|
[135] | 270 | if (score == 0) {
|
---|
[126] | 271 | score = 0.000000001; // to disallow 0 total score
|
---|
| 272 | }
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | /**
|
---|
| 276 | * <p>
|
---|
| 277 | * Checks if a rule applies to an instance.
|
---|
| 278 | * </p>
|
---|
| 279 | *
|
---|
| 280 | * @param instance
|
---|
| 281 | * the instance
|
---|
| 282 | * @param isTraining
|
---|
| 283 | * if true, the data is discretized training data and rangeIndizes are used;
|
---|
| 284 | * otherwise the data is numeric and the range string is used.
|
---|
| 285 | * @return true if the rule applies
|
---|
| 286 | */
|
---|
| 287 | public boolean applyRule(Instance instance, boolean isTraining) {
|
---|
| 288 | boolean result = true;
|
---|
| 289 | for (int k = 0; k < attributeIndizes.size(); k++) {
|
---|
| 290 | int attrIndex = attributeIndizes.get(k);
|
---|
| 291 | if (isTraining) {
|
---|
| 292 | double rangeIndex = rangeIndizes.get(k);
|
---|
| 293 | double instanceValue = instance.value(attrIndex);
|
---|
| 294 | result &= (instanceValue == rangeIndex);
|
---|
| 295 | }
|
---|
| 296 | else {
|
---|
| 297 | String range = ranges.get(k);
|
---|
[135] | 298 | if ("'All'".equals(range)) {
|
---|
[126] | 299 | result = true;
|
---|
[135] | 300 | }
|
---|
| 301 | else {
|
---|
[126] | 302 | double instanceValue = instance.value(attrIndex);
|
---|
| 303 | double lowerBound;
|
---|
| 304 | double upperBound;
|
---|
| 305 | String[] splitResult = range.split("--");
|
---|
| 306 | if (splitResult.length > 1) {
|
---|
| 307 | // second value is negative
|
---|
| 308 | throw new RuntimeException("negative second value cannot be handled by WHICH yet");
|
---|
| 309 | }
|
---|
| 310 | else {
|
---|
| 311 | splitResult = range.split("-");
|
---|
| 312 | if (splitResult.length > 2) {
|
---|
| 313 | // first value is negative
|
---|
| 314 | if ("inf".equals(splitResult[1])) {
|
---|
| 315 | lowerBound = Double.NEGATIVE_INFINITY;
|
---|
| 316 | }
|
---|
| 317 | else {
|
---|
| 318 | lowerBound = -Double.parseDouble(splitResult[1]);
|
---|
| 319 | }
|
---|
| 320 | if (splitResult[2].startsWith("inf")) {
|
---|
| 321 | upperBound = Double.POSITIVE_INFINITY;
|
---|
| 322 | }
|
---|
| 323 | else {
|
---|
| 324 | upperBound = Double.parseDouble(splitResult[2]
|
---|
| 325 | .substring(0, splitResult[2].length() - 2));
|
---|
| 326 | }
|
---|
| 327 | }
|
---|
| 328 | else {
|
---|
| 329 | // first value is positive
|
---|
[135] | 330 | if (splitResult[0].substring(2, splitResult[0].length())
|
---|
| 331 | .equals("ll'"))
|
---|
| 332 | {
|
---|
[126] | 333 | System.out.println("foo");
|
---|
| 334 | }
|
---|
[135] | 335 | lowerBound = Double.parseDouble(splitResult[0]
|
---|
| 336 | .substring(2, splitResult[0].length()));
|
---|
[126] | 337 | if (splitResult[1].startsWith("inf")) {
|
---|
| 338 | upperBound = Double.POSITIVE_INFINITY;
|
---|
| 339 | }
|
---|
| 340 | else {
|
---|
| 341 | upperBound = Double.parseDouble(splitResult[1]
|
---|
| 342 | .substring(0, splitResult[1].length() - 2));
|
---|
| 343 | }
|
---|
| 344 | }
|
---|
| 345 | }
|
---|
| 346 | boolean lowerBoundMatch =
|
---|
| 347 | (range.charAt(1) == '(' && instanceValue > lowerBound) ||
|
---|
| 348 | (range.charAt(1) == '[' && instanceValue >= lowerBound);
|
---|
| 349 | boolean upperBoundMatch = (range.charAt(range.length() - 2) == ')' &&
|
---|
| 350 | instanceValue < upperBound) ||
|
---|
[135] | 351 | (range.charAt(range.length() - 2) == ']' &&
|
---|
| 352 | instanceValue <= upperBound);
|
---|
[126] | 353 | result = lowerBoundMatch && upperBoundMatch;
|
---|
| 354 | }
|
---|
| 355 | }
|
---|
| 356 | }
|
---|
| 357 | return result;
|
---|
| 358 | }
|
---|
| 359 |
|
---|
| 360 | /**
|
---|
| 361 | * <p>
|
---|
| 362 | * returns the score of the rule
|
---|
| 363 | * </p>
|
---|
| 364 | *
|
---|
[136] | 365 | * @return the score
|
---|
[126] | 366 | */
|
---|
| 367 | public double getScore() {
|
---|
| 368 | return score;
|
---|
| 369 | }
|
---|
| 370 |
|
---|
| 371 | /*
|
---|
| 372 | * (non-Javadoc)
|
---|
| 373 | *
|
---|
| 374 | * @see java.lang.Comparable#compareTo(java.lang.Object)
|
---|
| 375 | */
|
---|
| 376 | @Override
|
---|
| 377 | public int compareTo(WhichRule other) {
|
---|
| 378 | // !!this compareTo is NOT consistent with equals!!
|
---|
| 379 | if (other == null) {
|
---|
| 380 | return -1;
|
---|
| 381 | }
|
---|
| 382 | if (other.score < this.score) {
|
---|
| 383 | return -1;
|
---|
| 384 | }
|
---|
| 385 | else if (other.score > this.score) {
|
---|
| 386 | return 1;
|
---|
| 387 | }
|
---|
| 388 | else {
|
---|
| 389 | return 0;
|
---|
| 390 | }
|
---|
| 391 | }
|
---|
| 392 |
|
---|
| 393 | /*
|
---|
| 394 | * (non-Javadoc)
|
---|
| 395 | *
|
---|
| 396 | * @see java.lang.Object#equals(java.lang.Object)
|
---|
| 397 | */
|
---|
| 398 | @Override
|
---|
| 399 | public boolean equals(Object other) {
|
---|
| 400 | if (other == null) {
|
---|
| 401 | return false;
|
---|
| 402 | }
|
---|
| 403 | if (!(other instanceof WhichRule)) {
|
---|
| 404 | return false;
|
---|
| 405 | }
|
---|
| 406 | WhichRule otherRule = (WhichRule) other;
|
---|
| 407 | return attributeIndizes.equals(otherRule.attributeIndizes) &&
|
---|
| 408 | rangeIndizes.equals(otherRule.rangeIndizes) && ranges.equals(otherRule.ranges);
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | /*
|
---|
| 412 | * (non-Javadoc)
|
---|
| 413 | *
|
---|
| 414 | * @see java.lang.Object#hashCode()
|
---|
| 415 | */
|
---|
| 416 | @Override
|
---|
| 417 | public int hashCode() {
|
---|
| 418 | return 117 + attributeIndizes.hashCode() + rangeIndizes.hashCode() + ranges.hashCode();
|
---|
| 419 | }
|
---|
| 420 |
|
---|
| 421 | /*
|
---|
| 422 | * (non-Javadoc)
|
---|
| 423 | *
|
---|
| 424 | * @see java.lang.Object#toString()
|
---|
| 425 | */
|
---|
| 426 | @Override
|
---|
| 427 | public String toString() {
|
---|
| 428 | return "indizes: " + attributeIndizes + "\tranges: " + ranges + "\t score: " + score;
|
---|
| 429 | }
|
---|
| 430 | }
|
---|
| 431 |
|
---|
| 432 | /**
|
---|
| 433 | * <p>
|
---|
| 434 | * Internal helper class that handles the WHICH stack during training. Please not that this is
|
---|
| 435 | * not really a stack, we just stick to the name given in the publication.
|
---|
| 436 | * </p>
|
---|
| 437 | *
|
---|
| 438 | * @author Steffen Herbold
|
---|
| 439 | */
|
---|
| 440 | private class WhichStack {
|
---|
| 441 |
|
---|
| 442 | /**
|
---|
| 443 | * rules on the WhichStack
|
---|
| 444 | */
|
---|
| 445 | List<WhichRule> rules;
|
---|
| 446 |
|
---|
| 447 | /**
|
---|
| 448 | * Currently sum of rule scores.
|
---|
| 449 | */
|
---|
| 450 | double scoreSum;
|
---|
| 451 |
|
---|
| 452 | /**
|
---|
| 453 | * Best rule score.
|
---|
| 454 | */
|
---|
| 455 | double bestScore;
|
---|
| 456 |
|
---|
| 457 | /**
|
---|
| 458 | * checks if a rule was added after the last sorting
|
---|
| 459 | */
|
---|
| 460 | boolean pushAfterSort;
|
---|
| 461 |
|
---|
| 462 | /**
|
---|
| 463 | * Internally used random number generator for creating new rules.
|
---|
| 464 | */
|
---|
| 465 | Random rand = new Random();
|
---|
| 466 |
|
---|
| 467 | /**
|
---|
| 468 | * <p>
|
---|
| 469 | * Creates a new WhichStack.
|
---|
| 470 | * </p>
|
---|
| 471 | *
|
---|
| 472 | */
|
---|
| 473 | public WhichStack() {
|
---|
| 474 | rules = new LinkedList<>();
|
---|
| 475 | scoreSum = 0.0;
|
---|
| 476 | bestScore = 0.0;
|
---|
| 477 | pushAfterSort = false;
|
---|
| 478 | }
|
---|
| 479 |
|
---|
| 480 | /**
|
---|
| 481 | * <p>
|
---|
| 482 | * Adds a rule to the WhichStack
|
---|
| 483 | * </p>
|
---|
| 484 | *
|
---|
| 485 | * @param rule
|
---|
| 486 | * that is added.
|
---|
| 487 | */
|
---|
| 488 | public void push(WhichRule rule) {
|
---|
| 489 | rules.add(rule);
|
---|
| 490 | scoreSum += rule.getScore();
|
---|
| 491 | if (rule.getScore() > bestScore) {
|
---|
| 492 | bestScore = rule.getScore();
|
---|
| 493 | }
|
---|
| 494 | pushAfterSort = true;
|
---|
| 495 | }
|
---|
| 496 |
|
---|
| 497 | /**
|
---|
| 498 | * <p>
|
---|
| 499 | * Generates a new rule as a random combination of two other rules. The two rules are drawn
|
---|
| 500 | * according to their scoring.
|
---|
| 501 | * </p>
|
---|
| 502 | *
|
---|
| 503 | * @param numRules
|
---|
| 504 | * @param traindata
|
---|
| 505 | */
|
---|
| 506 | public void generateRules(int numRules, Instances traindata) {
|
---|
| 507 | List<WhichRule> newRules = new LinkedList<>();
|
---|
| 508 |
|
---|
| 509 | for (int i = 0; i < numRules; i++) {
|
---|
| 510 | WhichRule newRule;
|
---|
| 511 | do {
|
---|
| 512 | WhichRule rule1 = drawRule();
|
---|
| 513 | WhichRule rule2;
|
---|
| 514 | do {
|
---|
| 515 | rule2 = drawRule();
|
---|
| 516 | }
|
---|
| 517 | while (rule2.equals(rule1));
|
---|
| 518 | newRule = new WhichRule(rule1, rule2);
|
---|
| 519 | }
|
---|
| 520 | while (newRules.contains(newRule));
|
---|
| 521 | newRules.add(newRule);
|
---|
| 522 | }
|
---|
| 523 | for (WhichRule newRule : newRules) {
|
---|
| 524 | newRule.scoreRule(traindata);
|
---|
| 525 | push(newRule);
|
---|
| 526 | }
|
---|
| 527 | }
|
---|
| 528 |
|
---|
| 529 | /**
|
---|
| 530 | * <p>
|
---|
| 531 | * Randomly draws a rule weighted by the score.
|
---|
| 532 | * </p>
|
---|
| 533 | *
|
---|
[136] | 534 | * @return drawn rule
|
---|
[126] | 535 | */
|
---|
| 536 | public WhichRule drawRule() {
|
---|
| 537 | double randVal = rand.nextDouble() * scoreSum;
|
---|
| 538 | double curSum = 0.0;
|
---|
| 539 | for (WhichRule rule : rules) {
|
---|
| 540 | curSum += rule.getScore();
|
---|
| 541 | if (curSum >= randVal) {
|
---|
| 542 | return rule;
|
---|
| 543 | }
|
---|
| 544 | }
|
---|
| 545 | Console.traceln(Level.SEVERE, "could not draw rule; bug in WhichStack.drawRule()");
|
---|
| 546 | return null;
|
---|
| 547 | }
|
---|
| 548 |
|
---|
| 549 | /**
|
---|
| 550 | * <p>
|
---|
| 551 | * Returns the best rule.
|
---|
| 552 | * </p>
|
---|
| 553 | *
|
---|
| 554 | * @return best rule
|
---|
| 555 | */
|
---|
| 556 | public WhichRule bestRule() {
|
---|
| 557 | if (rules.isEmpty()) {
|
---|
| 558 | return null;
|
---|
| 559 | }
|
---|
| 560 | if (pushAfterSort) {
|
---|
| 561 | Collections.sort(rules);
|
---|
| 562 | }
|
---|
| 563 | return rules.get(0);
|
---|
| 564 | }
|
---|
| 565 | }
|
---|
| 566 | }
|
---|