1 | package de.ugoe.cs.cpdp.dataselection;
|
---|
2 |
|
---|
3 | import static org.junit.Assert.*;
|
---|
4 |
|
---|
5 | import java.util.ArrayList;
|
---|
6 | import java.util.LinkedList;
|
---|
7 |
|
---|
8 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
9 | import org.junit.Test;
|
---|
10 |
|
---|
11 | import weka.core.Attribute;
|
---|
12 | import weka.core.DenseInstance;
|
---|
13 | import weka.core.Instances;
|
---|
14 |
|
---|
15 | public class TestAsTrainingTest {
|
---|
16 |
|
---|
17 | @Test
|
---|
18 | public void testApply() {
|
---|
19 | ArrayList<Attribute> attributes = new ArrayList<Attribute>();
|
---|
20 | attributes.add(new Attribute("attr1"));
|
---|
21 | attributes.add(new Attribute("class"));
|
---|
22 |
|
---|
23 | Instances testdata = new Instances("test", attributes, 0);
|
---|
24 | testdata.setClassIndex(1);
|
---|
25 | testdata.add(new DenseInstance(1.0, new double[]{3.0, 0.0}));
|
---|
26 | testdata.add(new DenseInstance(1.0, new double[]{6.6, 0.0}));
|
---|
27 | testdata.add(new DenseInstance(1.0, new double[]{3.1, 0.0}));
|
---|
28 |
|
---|
29 | Instances traindata = new Instances("train", attributes, 0);
|
---|
30 | traindata.setClassIndex(1);
|
---|
31 | traindata.add(new DenseInstance(1.0, new double[]{2.9, 0.0}));
|
---|
32 | traindata.add(new DenseInstance(1.0, new double[]{2.8, 0.0}));
|
---|
33 | traindata.add(new DenseInstance(1.0, new double[]{3.2, 0.0}));
|
---|
34 | traindata.add(new DenseInstance(1.0, new double[]{3.05, 0.0}));
|
---|
35 | traindata.add(new DenseInstance(1.0, new double[]{10.0, 0.0}));
|
---|
36 | traindata.add(new DenseInstance(1.0, new double[]{9.0, 0.0}));
|
---|
37 | traindata.add(new DenseInstance(1.0, new double[]{8.0, 0.0}));
|
---|
38 | traindata.add(new DenseInstance(1.0, new double[]{1.0, 0.0}));
|
---|
39 | traindata.add(new DenseInstance(1.0, new double[]{5.0, 0.0}));
|
---|
40 |
|
---|
41 | SetUniqueList<Instances> traindataSet = SetUniqueList.setUniqueList(new LinkedList<Instances>());
|
---|
42 | traindataSet.add(traindata);
|
---|
43 |
|
---|
44 | TestAsTraining filter = new TestAsTraining();
|
---|
45 | filter.apply(testdata, traindataSet);
|
---|
46 |
|
---|
47 | assertEquals(1, traindataSet.size());
|
---|
48 |
|
---|
49 | traindata = traindataSet.get(0);
|
---|
50 | assertNotSame(testdata, traindata);
|
---|
51 | assertEquals(testdata.numInstances(), traindata.numInstances());
|
---|
52 | for( int i=0; i<testdata.numInstances(); i++ ) {
|
---|
53 | assertArrayEquals(testdata.instance(i).toDoubleArray(), traindata.instance(i).toDoubleArray(), 0.000000001);
|
---|
54 | }
|
---|
55 | }
|
---|
56 |
|
---|
57 | }
|
---|