// Copyright 2015 Georg-August-Universität Göttingen, Germany // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package de.ugoe.cs.cpdp.eval; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import de.ugoe.cs.cpdp.training.ITrainer; import de.ugoe.cs.cpdp.training.IWekaCompatibleTrainer; import de.ugoe.cs.util.StringTools; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.core.Attribute; import weka.core.Instances; /** * Base class for the evaluation of results of classifiers compatible with the {@link Classifier} * interface. For each classifier, the following metrics are calculated: * * * @author Steffen Herbold */ public abstract class AbstractWekaEvaluation implements IEvaluationStrategy { /** * writer for the evaluation results */ private PrintWriter output = new PrintWriter(System.out); private boolean outputIsSystemOut = true; private String configurationName = "default"; /** * Creates the Weka evaluator. Allows the creation of the evaluator in different ways, e.g., for * cross-validation or evaluation on the test data. * * @param testdata * test data * @param classifier * classifier used * @return evaluator */ protected abstract Evaluation createEvaluator(Instances testdata, Classifier classifier); /* * (non-Javadoc) * * @see de.ugoe.cs.cpdp.eval.EvaluationStrategy#apply(weka.core.Instances, weka.core.Instances, * java.util.List, boolean) */ @Override public void apply(Instances testdata, Instances traindata, List trainers, boolean writeHeader, List storages) { final List classifiers = new LinkedList<>(); final List experimentResults = new LinkedList<>(); String productName = testdata.relationName(); for (ITrainer trainer : trainers) { if (trainer instanceof IWekaCompatibleTrainer) { classifiers.add(((IWekaCompatibleTrainer) trainer).getClassifier()); experimentResults.add(new ExperimentResult(configurationName, productName, ((IWekaCompatibleTrainer) trainer).getName())); } else { throw new RuntimeException("The selected evaluator only support Weka classifiers"); } } if (writeHeader) { output.append("version,size_test,size_training"); for (ITrainer trainer : trainers) { output.append(",succHe_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",succZi_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",succG75_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",succG60_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",error_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",recall_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",precision_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",fscore_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",gscore_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",mcc_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",auc_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",aucec_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",tpr_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",tnr_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",fpr_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",fnr_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",tp_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",fn_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",tn_" + ((IWekaCompatibleTrainer) trainer).getName()); output.append(",fp_" + ((IWekaCompatibleTrainer) trainer).getName()); } output.append(StringTools.ENDLINE); } output.append(productName); output.append("," + testdata.numInstances()); output.append("," + traindata.numInstances()); Evaluation eval = null; Iterator classifierIter = classifiers.iterator(); Iterator resultIter = experimentResults.iterator(); while (classifierIter.hasNext()) { Classifier classifier = classifierIter.next(); eval = createEvaluator(testdata, classifier); double pf = eval.numFalsePositives(1) / (eval.numFalsePositives(1) + eval.numTrueNegatives(1)); double gmeasure = 2 * eval.recall(1) * (1.0 - pf) / (eval.recall(1) + (1.0 - pf)); double aucec = calculateReviewEffort(testdata, classifier); double succHe = eval.recall(1) >= 0.7 && eval.precision(1) >= 0.5 ? 1.0 : 0.0; double succZi = eval.recall(1) >= 0.7 && eval.precision(1) >= 0.7 ? 1.0 : 0.0; double succG75 = gmeasure > 0.75 ? 1.0 : 0.0; double succG60 = gmeasure > 0.6 ? 1.0 : 0.0; output.append("," + succHe); output.append("," + succZi); output.append("," + succG75); output.append("," + succG60); output.append("," + eval.errorRate()); output.append("," + eval.recall(1)); output.append("," + eval.precision(1)); output.append("," + eval.fMeasure(1)); output.append("," + gmeasure); output.append("," + eval.matthewsCorrelationCoefficient(1)); output.append("," + eval.areaUnderROC(1)); output.append("," + aucec); output.append("," + eval.truePositiveRate(1)); output.append("," + eval.trueNegativeRate(1)); output.append("," + eval.falsePositiveRate(1)); output.append("," + eval.falseNegativeRate(1)); output.append("," + eval.numTruePositives(1)); output.append("," + eval.numFalseNegatives(1)); output.append("," + eval.numTrueNegatives(1)); output.append("," + eval.numFalsePositives(1)); ExperimentResult result = resultIter.next(); result.setSizeTestData(testdata.numInstances()); result.setSizeTrainingData(traindata.numInstances()); result.setSuccHe(succHe); result.setSuccZi(succZi); result.setSuccG75(succG75); result.setSuccG60(succG60); result.setError(eval.errorRate()); result.setRecall(eval.recall(1)); result.setPrecision(eval.precision(1)); result.setFscore(eval.fMeasure(1)); result.setGscore(gmeasure); result.setMcc(eval.matthewsCorrelationCoefficient(1)); result.setAuc(eval.areaUnderROC(1)); result.setAucec(aucec); result.setTpr(eval.truePositiveRate(1)); result.setTnr(eval.trueNegativeRate(1)); result.setFpr(eval.falsePositiveRate(1)); result.setFnr(eval.falseNegativeRate(1)); result.setTp(eval.numTruePositives(1)); result.setFn(eval.numFalseNegatives(1)); result.setTn(eval.numTrueNegatives(1)); result.setFp(eval.numFalsePositives(1)); for( IResultStorage storage : storages ) { storage.addResult(result); } } output.append(StringTools.ENDLINE); output.flush(); } private double calculateReviewEffort(Instances testdata, Classifier classifier) { // attribute in the JURECZKO data and default Attribute loc = testdata.attribute("loc"); if (loc == null) { // attribute in the NASA/SOFTMINE/MDP data loc = testdata.attribute("LOC_EXECUTABLE"); } if (loc == null) { // attribute in the AEEEM data loc = testdata.attribute("numberOfLinesOfCode"); } if (loc == null) { // attribute in the RELINK data loc = testdata.attribute("CountLineCodeExe"); } if( loc == null ) { return 0.0; } final List bugPredicted = new ArrayList<>(); final List nobugPredicted = new ArrayList<>(); double totalLoc = 0.0d; int totalBugs = 0; for (int i = 0; i < testdata.numInstances(); i++) { try { if (Double.compare(classifier.classifyInstance(testdata.instance(i)), 0.0d) == 0) { nobugPredicted.add(i); } else { bugPredicted.add(i); } } catch (Exception e) { throw new RuntimeException( "unexpected error during the evaluation of the review effort", e); } if (Double.compare(testdata.instance(i).classValue(), 1.0d) == 0) { totalBugs++; } totalLoc += testdata.instance(i).value(loc); } final List reviewLoc = new ArrayList<>(testdata.numInstances()); final List bugsFound = new ArrayList<>(testdata.numInstances()); double currentBugsFound = 0; while (!bugPredicted.isEmpty()) { double minLoc = Double.MAX_VALUE; int minIndex = -1; for (int i = 0; i < bugPredicted.size(); i++) { double currentLoc = testdata.instance(bugPredicted.get(i)).value(loc); if (currentLoc < minLoc) { minIndex = i; minLoc = currentLoc; } } if (minIndex != -1) { reviewLoc.add(minLoc / totalLoc); currentBugsFound += testdata.instance(bugPredicted.get(minIndex)).classValue(); bugsFound.add(currentBugsFound); bugPredicted.remove(minIndex); } else { throw new RuntimeException("Shouldn't happen!"); } } while (!nobugPredicted.isEmpty()) { double minLoc = Double.MAX_VALUE; int minIndex = -1; for (int i = 0; i < nobugPredicted.size(); i++) { double currentLoc = testdata.instance(nobugPredicted.get(i)).value(loc); if (currentLoc < minLoc) { minIndex = i; minLoc = currentLoc; } } if (minIndex != -1) { reviewLoc.add(minLoc / totalLoc); currentBugsFound += testdata.instance(nobugPredicted.get(minIndex)).classValue(); bugsFound.add(currentBugsFound); nobugPredicted.remove(minIndex); } else { throw new RuntimeException("Shouldn't happen!"); } } double auc = 0.0; for (int i = 0; i < bugsFound.size(); i++) { auc += reviewLoc.get(i) * bugsFound.get(i) / totalBugs; } return auc; } /* * (non-Javadoc) * * @see de.ugoe.cs.cpdp.Parameterizable#setParameter(java.lang.String) */ @Override public void setParameter(String parameters) { if (output != null && !outputIsSystemOut) { output.close(); } if ("system.out".equals(parameters) || "".equals(parameters)) { output = new PrintWriter(System.out); outputIsSystemOut = true; } else { try { output = new PrintWriter(new FileOutputStream(parameters)); outputIsSystemOut = false; int filenameStart = parameters.lastIndexOf('/')+1; int filenameEnd = parameters.lastIndexOf('.'); configurationName = parameters.substring(filenameStart, filenameEnd); } catch (FileNotFoundException e) { throw new RuntimeException(e); } } } }