// Copyright 2015 Georg-August-Universität Göttingen, Germany // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package de.ugoe.cs.cpdp.dataprocessing; import org.apache.commons.collections4.list.SetUniqueList; import weka.core.Instances; import weka.filters.Filter; import weka.filters.supervised.instance.Resample; /** * Implements undersampling, a strategy for handling bias in data. In case there are less positive * samples (i.e. defect-prone) samples in the data than negative samples (i.e. non-defect-prone), * the non-defect-prone entities are sampled such thatthe number of defect-prone and * non-defect-prone instances is the same afterwards. * * @author Steffen Herbold */ public class Undersampling implements IProcessesingStrategy, ISetWiseProcessingStrategy { /** * Does not have parameters. String is ignored. * * @param parameters * ignored */ @Override public void setParameter(String parameters) { // dummy } /* * (non-Javadoc) * * @see de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy#apply(weka.core.Instances, * org.apache.commons.collections4.list.SetUniqueList) */ @Override public void apply(Instances testdata, SetUniqueList traindataSet) { for (Instances traindata : traindataSet) { apply(testdata, traindata); } } /* * (non-Javadoc) * * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances, * weka.core.Instances) */ @Override public void apply(Instances testdata, Instances traindata) { final int[] counts = traindata.attributeStats(traindata.classIndex()).nominalCounts; if (counts[1] < counts[0]) { Instances negatives = new Instances(traindata); Instances positives = new Instances(traindata); for (int i = traindata.size() - 1; i >= 0; i--) { if (Double.compare(1.0, negatives.get(i).classValue()) == 0) { negatives.remove(i); } if (Double.compare(0.0, positives.get(i).classValue()) == 0) { positives.remove(i); } } Resample resample = new Resample(); resample.setSampleSizePercent((100.0 * counts[1]) / counts[0]); try { resample.setInputFormat(traindata); negatives = Filter.useFilter(negatives, resample); } catch (Exception e) { throw new RuntimeException(e); } traindata.clear(); for (int i = 0; i < negatives.size(); i++) { traindata.add(negatives.get(i)); } for (int i = 0; i < positives.size(); i++) { traindata.add(positives.get(i)); } } } }