// Copyright 2015 Georg-August-Universität Göttingen, Germany // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package de.ugoe.cs.cpdp.execution; import java.io.File; import java.util.Collections; import java.util.LinkedList; import java.util.List; import java.util.logging.Level; import org.apache.commons.collections4.list.SetUniqueList; import de.ugoe.cs.cpdp.ExperimentConfiguration; import de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy; import de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy; import de.ugoe.cs.cpdp.dataselection.IPointWiseDataselectionStrategy; import de.ugoe.cs.cpdp.dataselection.ISetWiseDataselectionStrategy; import de.ugoe.cs.cpdp.eval.IEvaluationStrategy; import de.ugoe.cs.cpdp.eval.IResultStorage; import de.ugoe.cs.cpdp.loader.IVersionLoader; import de.ugoe.cs.cpdp.training.ISetWiseTestdataAwareTrainingStrategy; import de.ugoe.cs.cpdp.training.ISetWiseTrainingStrategy; import de.ugoe.cs.cpdp.training.ITestAwareTrainingStrategy; import de.ugoe.cs.cpdp.training.ITrainer; import de.ugoe.cs.cpdp.training.ITrainingStrategy; import de.ugoe.cs.cpdp.training.IWekaCompatibleTrainer; import de.ugoe.cs.cpdp.versions.IVersionFilter; import de.ugoe.cs.cpdp.versions.SoftwareVersion; import de.ugoe.cs.util.console.Console; import weka.core.Instances; /** * Class responsible for executing an experiment according to an {@link ExperimentConfiguration}. * The steps of an experiment are as follows: * * * Note that this class implements {@link Runnable}, i.e., each experiment can be started in its own * thread. * * @author Steffen Herbold */ public abstract class AbstractCrossProjectExperiment implements IExecutionStrategy { /** * configuration of the experiment */ protected final ExperimentConfiguration config; /** * Constructor. Creates a new experiment based on a configuration. * * @param config * configuration of the experiment */ public AbstractCrossProjectExperiment(ExperimentConfiguration config) { this.config = config; } /** *

* Defines which products are allowed for training. *

* * @param trainingVersion * training version * @param testVersion * test candidate * @return true if test candidate can be used for training */ protected abstract boolean isTrainingVersion(SoftwareVersion trainingVersion, SoftwareVersion testVersion); /** * Helper method that combines a set of Weka {@link Instances} sets into a single * {@link Instances} set. * * @param traindataSet * set of {@link Instances} to be combines * @return single {@link Instances} set */ public static Instances makeSingleTrainingSet(SetUniqueList traindataSet) { Instances traindataFull = null; for (Instances traindata : traindataSet) { if (traindataFull == null) { traindataFull = new Instances(traindata); } else { for (int i = 0; i < traindata.numInstances(); i++) { traindataFull.add(traindata.instance(i)); } } } return traindataFull; } /** * Executes the experiment with the steps as described in the class comment. * * @see Runnable#run() */ @Override public void run() { final List versions = new LinkedList<>(); for (IVersionLoader loader : config.getLoaders()) { versions.addAll(loader.load()); } for (IVersionFilter filter : config.getVersionFilters()) { filter.apply(versions); } boolean writeHeader = true; int versionCount = 1; int testVersionCount = 0; for (SoftwareVersion testVersion : versions) { if (isVersion(testVersion, config.getTestVersionFilters())) { testVersionCount++; } } // sort versions Collections.sort(versions); for (SoftwareVersion testVersion : versions) { if (isVersion(testVersion, config.getTestVersionFilters())) { Console.traceln(Level.INFO, String.format("[%s] [%02d/%02d] %s: starting", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion())); int numResultsAvailable = resultsAvailable(testVersion); if (numResultsAvailable >= config.getRepetitions()) { Console.traceln(Level.INFO, String.format( "[%s] [%02d/%02d] %s: results already available; skipped", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion())); versionCount++; continue; } // Setup testdata and training data Instances testdata = testVersion.getInstances(); List efforts = testVersion.getEfforts(); SetUniqueList traindataSet = SetUniqueList.setUniqueList(new LinkedList()); for (SoftwareVersion trainingVersion : versions) { if (isVersion(trainingVersion, config.getTrainingVersionFilters())) { if (trainingVersion != testVersion) { if (isTrainingVersion(trainingVersion, testVersion)) { traindataSet.add(trainingVersion.getInstances()); } } } } for (ISetWiseProcessingStrategy processor : config.getSetWisePreprocessors()) { Console.traceln(Level.FINE, String.format( "[%s] [%02d/%02d] %s: applying setwise preprocessor %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), processor.getClass().getName())); processor.apply(testdata, traindataSet); } for (ISetWiseDataselectionStrategy dataselector : config.getSetWiseSelectors()) { Console .traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying setwise selection %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), dataselector.getClass().getName())); dataselector.apply(testdata, traindataSet); } for (ISetWiseProcessingStrategy processor : config.getSetWisePostprocessors()) { Console.traceln(Level.FINE, String.format( "[%s] [%02d/%02d] %s: applying setwise postprocessor %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), processor.getClass().getName())); processor.apply(testdata, traindataSet); } for (ISetWiseTrainingStrategy setwiseTrainer : config.getSetWiseTrainers()) { Console .traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying setwise trainer %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), setwiseTrainer.getName())); setwiseTrainer.apply(traindataSet); } for (ISetWiseTestdataAwareTrainingStrategy setwiseTestdataAwareTrainer : config .getSetWiseTestdataAwareTrainers()) { Console.traceln(Level.FINE, String.format( "[%s] [%02d/%02d] %s: applying testdata aware setwise trainer %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), setwiseTestdataAwareTrainer.getName())); setwiseTestdataAwareTrainer.apply(traindataSet, testdata); } Instances traindata = makeSingleTrainingSet(traindataSet); for (IProcessesingStrategy processor : config.getPreProcessors()) { Console.traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying preprocessor %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), processor.getClass().getName())); processor.apply(testdata, traindata); } for (IPointWiseDataselectionStrategy dataselector : config .getPointWiseSelectors()) { Console.traceln(Level.FINE, String.format( "[%s] [%02d/%02d] %s: applying pointwise selection %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), dataselector.getClass().getName())); traindata = dataselector.apply(testdata, traindata); } for (IProcessesingStrategy processor : config.getPostProcessors()) { Console.traceln(Level.FINE, String.format( "[%s] [%02d/%02d] %s: applying setwise postprocessor %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), processor.getClass().getName())); processor.apply(testdata, traindata); } for (ITrainingStrategy trainer : config.getTrainers()) { Console.traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying trainer %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), trainer.getName())); trainer.apply(traindata); } for (ITestAwareTrainingStrategy trainer : config.getTestAwareTrainers()) { Console.traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying trainer %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), trainer.getName())); trainer.apply(testdata, traindata); } File resultsDir = new File(config.getResultsPath()); if (!resultsDir.exists()) { resultsDir.mkdir(); } for (IEvaluationStrategy evaluator : config.getEvaluators()) { Console.traceln(Level.FINE, String.format("[%s] [%02d/%02d] %s: applying evaluator %s", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion(), evaluator.getClass().getName())); List allTrainers = new LinkedList<>(); for (ISetWiseTrainingStrategy setwiseTrainer : config.getSetWiseTrainers()) { allTrainers.add(setwiseTrainer); } for (ISetWiseTestdataAwareTrainingStrategy setwiseTestdataAwareTrainer : config .getSetWiseTestdataAwareTrainers()) { allTrainers.add(setwiseTestdataAwareTrainer); } for (ITrainingStrategy trainer : config.getTrainers()) { allTrainers.add(trainer); } for (ITestAwareTrainingStrategy trainer : config.getTestAwareTrainers()) { allTrainers.add(trainer); } if (writeHeader) { evaluator.setParameter(config.getResultsPath() + "/" + config.getExperimentName() + ".csv"); } evaluator.apply(testdata, traindata, allTrainers, efforts, writeHeader, config.getResultStorages()); writeHeader = false; } Console.traceln(Level.INFO, String.format("[%s] [%02d/%02d] %s: finished", config.getExperimentName(), versionCount, testVersionCount, testVersion.getVersion())); versionCount++; } } } /** * Helper method that checks if a version passes all filters. * * @param version * version that is checked * @param filters * list of the filters * @return true, if the version passes all filters, false otherwise */ private boolean isVersion(SoftwareVersion version, List filters) { boolean result = true; for (IVersionFilter filter : filters) { result &= !filter.apply(version); } return result; } /** *

* helper function that checks if the results are already in the data store *

* * @param version * version for which the results are checked * @return */ private int resultsAvailable(SoftwareVersion version) { if (config.getResultStorages().isEmpty()) { return 0; } List allTrainers = new LinkedList<>(); for (ISetWiseTrainingStrategy setwiseTrainer : config.getSetWiseTrainers()) { allTrainers.add(setwiseTrainer); } for (ISetWiseTestdataAwareTrainingStrategy setwiseTestdataAwareTrainer : config .getSetWiseTestdataAwareTrainers()) { allTrainers.add(setwiseTestdataAwareTrainer); } for (ITrainingStrategy trainer : config.getTrainers()) { allTrainers.add(trainer); } for (ITestAwareTrainingStrategy trainer : config.getTestAwareTrainers()) { allTrainers.add(trainer); } int available = Integer.MAX_VALUE; for (IResultStorage storage : config.getResultStorages()) { String classifierName = ((IWekaCompatibleTrainer) allTrainers.get(0)).getName(); int curAvailable = storage.containsResult(config.getExperimentName(), version.getVersion(), classifierName); if (curAvailable < available) { available = curAvailable; } } return available; } }