// Copyright 2015 Georg-August-Universität Göttingen, Germany // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package de.ugoe.cs.cpdp.util; import org.apache.commons.math3.ml.distance.EuclideanDistance; import weka.core.Instance; import weka.core.Instances; /** *

* Collections of helper functions to work with Weka. *

* * @author Steffen Herbold */ public class WekaUtils { /** *

* Data class for distance between instances within a data set based on their distributional * characteristics. *

* * @author Steffen Herbold */ public static class DistChar { /** * mean distance */ public final double mean; /** * standard deviation */ public final double std; /** * minimal value */ public final double min; /** * maximal value */ public final double max; /** * number of instances */ public final int num; /** *

* Constructor. Creates a new DistChar object. *

* * @param mean mean distance between instances * @param std standard deviation of distances between instances * @param min minimal distance between instances * @param max maximal distance between instances * @param num number of instance */ private DistChar(double mean, double std, double min, double max, int num) { this.mean = mean; this.std = std; this.min = min; this.max = max; this.num = num; } } /** * Scaling value that moves the decimal point by 5 digets. */ public final static double SCALER = 10000.0d; /** *

* Adoption of the Hamming difference to numerical values, i.e., basically a count of different * metric values. *

* * @param inst1 * first instance to be compared * @param inst2 * second instance to be compared * @return the distance */ public static double hammingDistance(Instance inst1, Instance inst2) { double distance = 0.0; for (int j = 0; j < inst1.numAttributes(); j++) { if (j != inst1.classIndex()) { if (inst1.value(j) != inst2.value(j)) { distance += 1.0; } } } return distance; } /** *

* Returns a double array of the values without the classification. *

* * @param instance * the instance * @return double array */ public static double[] instanceValues(Instance instance) { double[] values = new double[instance.numAttributes() - 1]; int k = 0; for (int j = 0; j < instance.numAttributes(); j++) { if (j != instance.classIndex()) { values[k] = instance.value(j); k++; } } return values; } /** *

* Calculates the distributional characteristics of the distances the instances within a data * set have to each other. *

* * @param data * data for which the instances are characterized * @return characteristics */ public static DistChar datasetDistance(Instances data) { double distance; double sumAll = 0.0; double sumAllQ = 0.0; double min = Double.MAX_VALUE; double max = Double.MIN_VALUE; int numCmp = 0; int l = 0; double[] inst1 = new double[data.numAttributes() - 1]; double[] inst2 = new double[data.numAttributes() - 1]; EuclideanDistance euclideanDistance = new EuclideanDistance(); for (int i = 0; i < data.numInstances(); i++) { l = 0; for (int k = 0; k < data.numAttributes(); k++) { if (k != data.classIndex()) { inst1[l] = data.instance(i).value(k); } } for (int j = 0; j < data.numInstances(); j++) { if (j != i) { l = 0; for (int k = 0; k < data.numAttributes(); k++) { if (k != data.classIndex()) { inst2[l] = data.instance(j).value(k); } } distance = euclideanDistance.compute(inst1, inst2); sumAll += distance; sumAllQ += distance * distance; numCmp++; if (distance < min) { min = distance; } if (distance > max) { max = distance; } } } } double mean = sumAll / numCmp; double std = Math.sqrt((sumAllQ - (sumAll * sumAll) / numCmp) * (1.0d / (numCmp - 1))); return new DistChar(mean, std, min, max, data.numInstances()); } /** *

* Calculates the distributional characteristics of the distances of a single attribute the * instances within a data set have to each other. *

* * @param data * data for which the instances are characterized * @param index * attribute for which the distances are characterized * @return characteristics */ public static DistChar attributeDistance(Instances data, int index) { double distance; double sumAll = 0.0; double sumAllQ = 0.0; double min = Double.MAX_VALUE; double max = Double.MIN_VALUE; int numCmp = 0; double value1, value2; for (int i = 0; i < data.numInstances(); i++) { value1 = data.instance(i).value(index); for (int j = 0; j < data.numInstances(); j++) { if (j != i) { value2 = data.instance(j).value(index); distance = Math.abs(value1 - value2); sumAll += distance; sumAllQ += distance * distance; numCmp++; if (distance < min) { min = distance; } if (distance > max) { max = distance; } } } } double mean = sumAll / numCmp; double std = Math.sqrt((sumAllQ - (sumAll * sumAll) / numCmp) * (1.0d / (numCmp - 1))); return new DistChar(mean, std, min, max, data.numInstances()); } /** *

* Upscales the value of a single attribute. This is a workaround to get BayesNet running for * all data. Works on a copy of the training data, i.e., leaves the original data untouched. *

* * @param traindata * data from which the attribute is upscaled. * @param attributeIndex * index of the attribute * @return data with upscaled attribute */ public static Instances upscaleAttribute(Instances traindata, int attributeIndex) { Instances traindataCopy = new Instances(traindata); for (int i = 0; i < traindata.size(); i++) { traindataCopy.get(i).setValue(attributeIndex, traindata.get(i).value(attributeIndex) * SCALER); } return traindataCopy; } }