package de.ugoe.cs.cpdp.dataprocessing; import org.apache.commons.collections4.list.SetUniqueList; import weka.core.Attribute; import weka.core.Instance; import weka.core.Instances; /** * Standardization procedure after Watanabe et al.: Adapting a Fault Prediction Model to Allow Inter Language Reuse. *

* In comparison to Watanabe et al., we transform training data instead of the test data. Otherwise, this approach would not be feasible with multiple projects. * @author Steffen Herbold */ public class AverageStandardization implements ISetWiseProcessingStrategy, IProcessesingStrategy { /** * Does not have parameters. String is ignored. * @param parameters ignored */ @Override public void setParameter(String parameters) { // dummy } /** * @see de.ugoe.cs.cpdp.dataprocessing.SetWiseProcessingStrategy#apply(weka.core.Instances, org.apache.commons.collections4.list.SetUniqueList) */ @Override public void apply(Instances testdata, SetUniqueList traindataSet) { final Attribute classAttribute = testdata.classAttribute(); final double[] meanTest = new double[testdata.numAttributes()]; // get means of testdata for( int j=0 ; j