package de.ugoe.cs.cpdp.dataprocessing; import org.apache.commons.collections4.list.SetUniqueList; import weka.core.Instances; import weka.filters.Filter; import weka.filters.supervised.instance.Resample; /** * Resamples the data with WEKA {@link Resample} to have a uniform distribution among all classes. * @author Steffen Herbold */ public class Resampling implements IProcessesingStrategy, ISetWiseProcessingStrategy { /** * Does not have parameters. String is ignored. * @param parameters ignored */ @Override public void setParameter(String parameters) { // dummy } /* * (non-Javadoc) * @see de.ugoe.cs.cpdp.dataprocessing.ISetWiseProcessingStrategy#apply(weka.core.Instances, org.apache.commons.collections4.list.SetUniqueList) */ @Override public void apply(Instances testdata, SetUniqueList traindataSet) { for( Instances traindata : traindataSet ) { apply(testdata, traindata); } } /* * (non-Javadoc) * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances, weka.core.Instances) */ @Override public void apply(Instances testdata, Instances traindata) { Resample resample = new Resample(); resample.setSampleSizePercent(100); resample.setBiasToUniformClass(1.0); Instances traindataSample; try { resample.setInputFormat(traindata); traindataSample = Filter.useFilter(traindata, resample); } catch (Exception e) { throw new RuntimeException(e); } traindata.clear(); for( int i=0 ; i