// Copyright 2015 Georg-August-Universität Göttingen, Germany // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package de.ugoe.cs.cpdp.dataprocessing; import java.util.Iterator; import java.util.SortedSet; import java.util.TreeSet; import java.util.logging.Level; import org.apache.commons.math3.stat.descriptive.rank.Median; import de.ugoe.cs.util.console.Console; import weka.core.Instance; import weka.core.Instances; /** *

* This processor implements the CLAMI strategy from the CLAMI paper at ASE 2014 be Nam et al. With * CLAMI, the original classification of the data is removed and instead a new classification is * created based on metric values that are higher than the median of the metric. Afterwards, a * subset of the metrics is selected, where the violations of this median threshold is minimal. * Finally, all instances where the metric violations are not correct are dropped, leaving * noise-free data regarding the median threshold classification. *

*

* This can also be done for the test data (i.e., TestAsTraining data selection), as the original * classification is completely ignored. Hence, CLAMI is an approach for unsupervised learning. *

* * @author Steffen Herbold */ public class CLAMIProcessor implements IProcessesingStrategy { /* * (non-Javadoc) * * @see de.ugoe.cs.cpdp.IParameterizable#setParameter(java.lang.String) */ @Override public void setParameter(String parameters) { // TODO Auto-generated method stub } /* * (non-Javadoc) * * @see de.ugoe.cs.cpdp.dataprocessing.IProcessesingStrategy#apply(weka.core.Instances, * weka.core.Instances) */ @Override public void apply(Instances testdata, Instances traindata) { applyCLAMI(testdata, traindata); } /** *

* Applies the CLAMI processor to the data. The test data is also required, in order to * guarantee a consistent metric set. *

* * @param testdata * test data; the data is not modified, only metrics are dropped * @param data * data to which the CLAMI processor is applied */ public void applyCLAMI(Instances testdata, Instances data) { // first determine medians double[] medians = new double[data.numAttributes()]; // get medians for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex()) { medians[j] = data.kthSmallestValue(j, (data.numInstances() + 1) >> 1); } } // now determine cluster number for each instance double[] clusterNumber = new double[data.numInstances()]; for (int i = 0; i < data.numInstances(); i++) { int countHighValues = 0; Instance currentInstance = data.get(i); for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex()) { if (currentInstance.value(j) > medians[j]) { countHighValues++; } } } clusterNumber[i] = countHighValues; } // determine median of cluster number Median m = new Median(); double medianClusterNumber = m.evaluate(clusterNumber); // now we filter the metrics int[] numMetricViolations = new int[data.numAttributes()]; for (int j = 0; j < data.numAttributes(); j++) { int currentViolations = 0; for (int i = 0; i < data.numInstances(); i++) { Instance currentInstance = data.get(i); if (j != data.classIndex()) { if (clusterNumber[i] > medianClusterNumber) { // "buggy" if (currentInstance.value(j) <= medians[j]) { currentViolations++; } } else { // "not buggy" if (currentInstance.value(j) > medians[j]) { currentViolations++; } } } } numMetricViolations[j] = currentViolations; } SortedSet distinctViolationCounts = new TreeSet<>(); for (int currentViolations : numMetricViolations) { distinctViolationCounts.add(currentViolations); } Iterator violationCountInterator = distinctViolationCounts.iterator(); int violationCutoff = violationCountInterator.next(); // now we filter the data; boolean[] cleanInstances = new boolean[data.numInstances()]; int numCleanBuggyInstances = 0; int numCleanBugfreeInstances = 0; do { violationCutoff = violationCountInterator.next(); cleanInstances = new boolean[data.numInstances()]; numCleanBuggyInstances = 0; numCleanBugfreeInstances = 0; for (int i = 0; i < data.numInstances(); i++) { int currentViolations = 0; Instance currentInstance = data.get(i); for (int j = 0; j < data.numAttributes(); j++) { if (j != data.classIndex() && numMetricViolations[j] <= violationCutoff) { if (clusterNumber[i] > medianClusterNumber) { // "buggy" if (currentInstance.value(j) <= medians[j]) { currentViolations++; } } else { // "not buggy" if (currentInstance.value(j) > medians[j]) { currentViolations++; } } } } if (currentViolations == 0) { cleanInstances[i] = true; if (clusterNumber[i] > medianClusterNumber) { numCleanBuggyInstances++; } else { numCleanBugfreeInstances++; } } else { cleanInstances[i] = false; } } } while (numCleanBuggyInstances == 0 || numCleanBugfreeInstances == 0); // output some interesting information to provide insights into the CLAMI model Console.traceln(Level.FINE, "Selected Metrics and Median-threshold: "); for( int j=0 ; j= 0; j--) { if (j != data.classIndex() && numMetricViolations[j] > violationCutoff) { data.deleteAttributeAt(j); testdata.deleteAttributeAt(j); } } // drop the unclean instances for (int i = data.numInstances() - 1; i >= 0; i--) { if (!cleanInstances[i]) { data.delete(i); } else { // set the classification if (clusterNumber[i] > medianClusterNumber) { data.get(i).setClassValue(1.0d); } else { data.get(i).setClassValue(0.0d); } } } } }