// Copyright 2015 Georg-August-Universität Göttingen, Germany // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package de.ugoe.cs.cpdp.dataprocessing; import org.apache.commons.collections4.list.SetUniqueList; import weka.core.Instance; import weka.core.Instances; /** *
* Helper class for normalization of data sets. *
* * @author Steffen Herbold */ public class NormalizationUtil { /** ** Min-Max normalization to scale all data to the interval [0,1] (N1 in Transfer Defect Learning * by Nam et al.). *
* * @param data * data that is normalized */ public static void minMax(Instances data) { for (int j = 0; j < data.numAttributes(); j++) { if (data.classIndex() != j) { double min = data.attributeStats(j).numericStats.min; double max = data.attributeStats(j).numericStats.max; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); double newValue = (inst.value(j) - min) / (max - min); inst.setValue(j, newValue); } } } } /** ** Z-Score normalization (N2 in Transfer Defect Learning by Nam et al.). *
* * @param data * data that is normalized */ public static void zScore(Instances data) { final double[] mean = new double[data.numAttributes()]; final double[] std = new double[data.numAttributes()]; // get means and stddevs of data for (int j = 0; j < data.numAttributes(); j++) { if (data.classIndex() != j) { mean[j] = data.meanOrMode(j); std[j] = Math.sqrt(data.variance(j)); } } applyZScore(data, mean, std); } /** ** Z-Score normalization using the mean and std of the training data (N3 in Transfer Defect * Learning by Nam et al.). *
* * @param testdata * test data of the target product * @param traindata * training data */ public static void zScoreTraining(Instances testdata, Instances traindata) { final double[] mean = new double[testdata.numAttributes()]; final double[] std = new double[testdata.numAttributes()]; // get means of training for (int j = 0; j < traindata.numAttributes(); j++) { if (traindata.classIndex() != j) { mean[j] = traindata.meanOrMode(j); std[j] = Math.sqrt(traindata.variance(j)); } } applyZScore(testdata, mean, std); applyZScore(traindata, mean, std); } /** ** Z-Score normalization using the mean and std of the test data (N4 in Transfer Defect Learning * by Nam et al.). *
* * @param testdata * test data of the target product * @param traindata * training data */ public static void zScoreTarget(Instances testdata, Instances traindata) { final double[] mean = new double[testdata.numAttributes()]; final double[] std = new double[testdata.numAttributes()]; // get means of testdata for (int j = 0; j < testdata.numAttributes(); j++) { if (testdata.classIndex() != j) { mean[j] = testdata.meanOrMode(j); std[j] = Math.sqrt(testdata.variance(j)); } } applyZScore(testdata, mean, std); applyZScore(traindata, mean, std); } /** ** Z-Score normalization using the mean and std of the test data (N4 in Transfer Defect Learning * by Nam et al.). *
* * @param testdata * test data of the target product * @param traindata * training data */ public static void zScoreTarget(Instances testdata, SetUniqueList* Internal helper function *
*/ private static void applyZScore(Instances data, double[] mean, double[] std) { for (int i = 0; i < data.numInstances(); i++) { Instance instance = data.instance(i); for (int j = 0; j < data.numAttributes(); j++) { if (data.classIndex() != j) { instance.setValue(j, instance.value(j) - mean[j] / std[j]); } } } } }