1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
18 |
|
---|
19 | import weka.core.Instance;
|
---|
20 | import weka.core.Instances;
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * <p>
|
---|
24 | * Helper class for normalization of data sets.
|
---|
25 | * </p>
|
---|
26 | *
|
---|
27 | * @author Steffen Herbold
|
---|
28 | */
|
---|
29 | public class NormalizationUtil {
|
---|
30 |
|
---|
31 | /**
|
---|
32 | * <p>
|
---|
33 | * Min-Max normalization to scale all data to the interval [0,1] (N1 in Transfer Defect Learning
|
---|
34 | * by Nam et al.).
|
---|
35 | * </p>
|
---|
36 | *
|
---|
37 | * @param data
|
---|
38 | * data that is normalized
|
---|
39 | */
|
---|
40 | public static void minMax(Instances data) {
|
---|
41 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
42 | if (data.classIndex() != j) {
|
---|
43 | double min = data.attributeStats(j).numericStats.min;
|
---|
44 | double max = data.attributeStats(j).numericStats.max;
|
---|
45 |
|
---|
46 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
47 | Instance inst = data.instance(i);
|
---|
48 | double newValue = (inst.value(j) - min) / (max - min);
|
---|
49 | inst.setValue(j, newValue);
|
---|
50 | }
|
---|
51 | }
|
---|
52 | }
|
---|
53 | }
|
---|
54 |
|
---|
55 | /**
|
---|
56 | * <p>
|
---|
57 | * Z-Score normalization (N2 in Transfer Defect Learning by Nam et al.).
|
---|
58 | * </p>
|
---|
59 | *
|
---|
60 | * @param data
|
---|
61 | * data that is normalized
|
---|
62 | */
|
---|
63 | public static void zScore(Instances data) {
|
---|
64 | final double[] mean = new double[data.numAttributes()];
|
---|
65 | final double[] std = new double[data.numAttributes()];
|
---|
66 |
|
---|
67 | // get means and stddevs of data
|
---|
68 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
69 | if (data.classIndex() != j) {
|
---|
70 | mean[j] = data.meanOrMode(j);
|
---|
71 | std[j] = Math.sqrt(data.variance(j));
|
---|
72 | }
|
---|
73 | }
|
---|
74 | applyZScore(data, mean, std);
|
---|
75 | }
|
---|
76 |
|
---|
77 | /**
|
---|
78 | * <p>
|
---|
79 | * Z-Score normalization using the mean and std of the training data (N3 in Transfer Defect
|
---|
80 | * Learning by Nam et al.).
|
---|
81 | * </p>
|
---|
82 | *
|
---|
83 | * @param testdata
|
---|
84 | * test data of the target product
|
---|
85 | * @param traindata
|
---|
86 | * training data
|
---|
87 | */
|
---|
88 | public static void zScoreTraining(Instances testdata, Instances traindata) {
|
---|
89 | final double[] mean = new double[testdata.numAttributes()];
|
---|
90 | final double[] std = new double[testdata.numAttributes()];
|
---|
91 |
|
---|
92 | // get means of training
|
---|
93 | for (int j = 0; j < traindata.numAttributes(); j++) {
|
---|
94 | if (traindata.classIndex() != j) {
|
---|
95 | mean[j] = traindata.meanOrMode(j);
|
---|
96 | std[j] = Math.sqrt(traindata.variance(j));
|
---|
97 | }
|
---|
98 | }
|
---|
99 |
|
---|
100 | applyZScore(testdata, mean, std);
|
---|
101 | applyZScore(traindata, mean, std);
|
---|
102 | }
|
---|
103 |
|
---|
104 | /**
|
---|
105 | * <p>
|
---|
106 | * Z-Score normalization using the mean and std of the test data (N4 in Transfer Defect Learning
|
---|
107 | * by Nam et al.).
|
---|
108 | * </p>
|
---|
109 | *
|
---|
110 | * @param testdata
|
---|
111 | * test data of the target product
|
---|
112 | * @param traindata
|
---|
113 | * training data
|
---|
114 | */
|
---|
115 | public static void zScoreTarget(Instances testdata, Instances traindata) {
|
---|
116 | final double[] mean = new double[testdata.numAttributes()];
|
---|
117 | final double[] std = new double[testdata.numAttributes()];
|
---|
118 |
|
---|
119 | // get means of testdata
|
---|
120 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
121 | if (testdata.classIndex() != j) {
|
---|
122 | mean[j] = testdata.meanOrMode(j);
|
---|
123 | std[j] = Math.sqrt(testdata.variance(j));
|
---|
124 | }
|
---|
125 | }
|
---|
126 |
|
---|
127 | applyZScore(testdata, mean, std);
|
---|
128 | applyZScore(traindata, mean, std);
|
---|
129 | }
|
---|
130 |
|
---|
131 | /**
|
---|
132 | * <p>
|
---|
133 | * Z-Score normalization using the mean and std of the test data (N4 in Transfer Defect Learning
|
---|
134 | * by Nam et al.).
|
---|
135 | * </p>
|
---|
136 | *
|
---|
137 | * @param testdata
|
---|
138 | * test data of the target product
|
---|
139 | * @param traindata
|
---|
140 | * training data
|
---|
141 | */
|
---|
142 | public static void zScoreTarget(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
143 | final double[] mean = new double[testdata.numAttributes()];
|
---|
144 | final double[] std = new double[testdata.numAttributes()];
|
---|
145 |
|
---|
146 | // get means of testdata
|
---|
147 | for (int j = 0; j < testdata.numAttributes(); j++) {
|
---|
148 | if (testdata.classIndex() != j) {
|
---|
149 | mean[j] = testdata.meanOrMode(j);
|
---|
150 | std[j] = Math.sqrt(testdata.variance(j));
|
---|
151 | }
|
---|
152 | }
|
---|
153 |
|
---|
154 | applyZScore(testdata, mean, std);
|
---|
155 | for (Instances traindata : traindataSet) {
|
---|
156 | applyZScore(traindata, mean, std);
|
---|
157 | }
|
---|
158 | }
|
---|
159 |
|
---|
160 | /**
|
---|
161 | * <p>
|
---|
162 | * Internal helper function
|
---|
163 | * </p>
|
---|
164 | */
|
---|
165 | private static void applyZScore(Instances data, double[] mean, double[] std) {
|
---|
166 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
167 | Instance instance = data.instance(i);
|
---|
168 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
169 | if (data.classIndex() != j) {
|
---|
170 | instance.setValue(j, instance.value(j) - mean[j] / std[j]);
|
---|
171 | }
|
---|
172 | }
|
---|
173 | }
|
---|
174 | }
|
---|
175 | }
|
---|