1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataprocessing;
|
---|
16 |
|
---|
17 | import org.apache.commons.math3.ml.distance.EuclideanDistance;
|
---|
18 |
|
---|
19 | import weka.core.Instances;
|
---|
20 |
|
---|
21 | // normalization selected according to TCA+ rules (TCA has to be applied separately
|
---|
22 | public class TCAPlusNormalization implements IProcessesingStrategy {
|
---|
23 |
|
---|
24 | private class DistChar {
|
---|
25 | private final double mean;
|
---|
26 | private final double std;
|
---|
27 | private final double min;
|
---|
28 | private final double max;
|
---|
29 | private int num;
|
---|
30 | private DistChar(double mean, double std, double min, double max, int num) {
|
---|
31 | this.mean = mean;
|
---|
32 | this.std = std;
|
---|
33 | this.min = min;
|
---|
34 | this.max = max;
|
---|
35 | this.num = num;
|
---|
36 | }
|
---|
37 | }
|
---|
38 |
|
---|
39 | /**
|
---|
40 | * Does not have parameters. String is ignored.
|
---|
41 | *
|
---|
42 | * @param parameters
|
---|
43 | * ignored
|
---|
44 | */
|
---|
45 | @Override
|
---|
46 | public void setParameter(String parameters) {
|
---|
47 | // TODO Auto-generated method stub
|
---|
48 |
|
---|
49 | }
|
---|
50 |
|
---|
51 | @Override
|
---|
52 | public void apply(Instances testdata, Instances traindata) {
|
---|
53 | applyTCAPlus(testdata, traindata);
|
---|
54 | }
|
---|
55 |
|
---|
56 | private void applyTCAPlus(Instances testdata, Instances traindata) {
|
---|
57 | DistChar dcTest = datasetDistance(testdata);
|
---|
58 | DistChar dcTrain = datasetDistance(traindata);
|
---|
59 |
|
---|
60 | // RULE 1:
|
---|
61 | if( 0.9*dcTrain.mean<=dcTest.mean && 1.1*dcTrain.mean>=dcTest.mean &&
|
---|
62 | 0.9*dcTrain.std<=dcTest.std && 1.1*dcTrain.std>=dcTest.std) {
|
---|
63 | // do nothing
|
---|
64 | }
|
---|
65 | // RULE 2:
|
---|
66 | else if((0.4*dcTrain.min>dcTest.min || 1.6*dcTrain.min<dcTest.min) &&
|
---|
67 | (0.4*dcTrain.max>dcTest.max || 1.6*dcTrain.min<dcTest.max) &&
|
---|
68 | (0.4*dcTrain.min>dcTest.num || 1.6*dcTrain.min<dcTest.num)) {
|
---|
69 | NormalizationUtil.minMax(testdata);
|
---|
70 | NormalizationUtil.minMax(traindata);
|
---|
71 | }
|
---|
72 | // RULE 3:
|
---|
73 | else if((0.4*dcTrain.std>dcTest.std && dcTrain.num<dcTest.num) ||
|
---|
74 | (1.6*dcTrain.std<dcTest.std)&& dcTrain.num>dcTest.num) {
|
---|
75 | NormalizationUtil.zScoreTraining(testdata, traindata);
|
---|
76 | }
|
---|
77 | // RULE 4:
|
---|
78 | else if((0.4*dcTrain.std>dcTest.std && dcTrain.num>dcTest.num) ||
|
---|
79 | (1.6*dcTrain.std<dcTest.std)&& dcTrain.num<dcTest.num) {
|
---|
80 | NormalizationUtil.zScoreTarget(testdata, traindata);
|
---|
81 | }
|
---|
82 | //RULE 5:
|
---|
83 | else {
|
---|
84 | NormalizationUtil.zScore(testdata);
|
---|
85 | NormalizationUtil.zScore(traindata);
|
---|
86 | }
|
---|
87 | }
|
---|
88 |
|
---|
89 | private DistChar datasetDistance(Instances data) {
|
---|
90 | double distance;
|
---|
91 | double sumAll = 0.0;
|
---|
92 | double sumAllQ = 0.0;
|
---|
93 | double min = Double.MAX_VALUE;
|
---|
94 | double max = Double.MIN_VALUE;
|
---|
95 | int numCmp = 0;
|
---|
96 | int l = 0;
|
---|
97 | double[] inst1 = new double[data.numAttributes()-1];
|
---|
98 | double[] inst2 = new double[data.numAttributes()-1];
|
---|
99 | EuclideanDistance euclideanDistance = new EuclideanDistance();
|
---|
100 | for( int i=0; i<data.numInstances(); i++ ) {
|
---|
101 | l=0;
|
---|
102 | for( int k=0; k<data.numAttributes(); k++ ) {
|
---|
103 | if( k!=data.classIndex() ) {
|
---|
104 | inst1[l] = data.instance(i).value(k);
|
---|
105 | }
|
---|
106 | }
|
---|
107 | for( int j=0; j<data.numInstances(); j++ ) {
|
---|
108 | l=0;
|
---|
109 | for( int k=0; k<data.numAttributes(); k++ ) {
|
---|
110 | if( k!=data.classIndex() ) {
|
---|
111 | inst2[l] = data.instance(j).value(k);
|
---|
112 | }
|
---|
113 | }
|
---|
114 | distance = euclideanDistance.compute(inst1, inst2);
|
---|
115 | sumAll += distance;
|
---|
116 | sumAllQ += distance*distance;
|
---|
117 | numCmp++;
|
---|
118 | if( distance < min ) {
|
---|
119 | min = distance;
|
---|
120 | }
|
---|
121 | if( distance > max ) {
|
---|
122 | max = distance;
|
---|
123 | }
|
---|
124 | }
|
---|
125 | }
|
---|
126 | double mean = sumAll / numCmp;
|
---|
127 | double std = Math.sqrt((sumAllQ-(sumAll*sumAll)/numCmp) *
|
---|
128 | (1.0d / (numCmp - 1)));
|
---|
129 | return new DistChar(mean, std, min, max, data.numInstances());
|
---|
130 | }
|
---|
131 |
|
---|
132 | }
|
---|