1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
16 |
|
---|
17 | import java.util.Arrays;
|
---|
18 |
|
---|
19 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
20 |
|
---|
21 | import weka.core.Instances;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Implements CLIFF data pruning.
|
---|
25 | *
|
---|
26 | * @author Steffen Herbold
|
---|
27 | */
|
---|
28 | public class CLIFF implements IPointWiseDataselectionStrategy, ISetWiseDataselectionStrategy {
|
---|
29 |
|
---|
30 | /**
|
---|
31 | * percentage of data selected
|
---|
32 | */
|
---|
33 | private double percentage = 0.10;
|
---|
34 |
|
---|
35 | /**
|
---|
36 | * number of ranges considered
|
---|
37 | */
|
---|
38 | private final int numRanges = 10;
|
---|
39 |
|
---|
40 | /**
|
---|
41 | * Sets the number of neighbors.
|
---|
42 | *
|
---|
43 | * @param parameters
|
---|
44 | * number of neighbors
|
---|
45 | */
|
---|
46 | @Override
|
---|
47 | public void setParameter(String parameters) {
|
---|
48 | if (parameters != null) {
|
---|
49 | percentage = Double.parseDouble(parameters);
|
---|
50 | }
|
---|
51 | }
|
---|
52 |
|
---|
53 | /*
|
---|
54 | * @see de.ugoe.cs.cpdp.dataselection.SetWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
55 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
56 | */
|
---|
57 | @Override
|
---|
58 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
59 | for (Instances traindata : traindataSet) {
|
---|
60 | applyCLIFF(traindata);
|
---|
61 | }
|
---|
62 | }
|
---|
63 |
|
---|
64 | /*
|
---|
65 | * @see de.ugoe.cs.cpdp.dataselection.PointWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
66 | * weka.core.Instances)
|
---|
67 | */
|
---|
68 | @Override
|
---|
69 | public Instances apply(Instances testdata, Instances traindata) {
|
---|
70 | return applyCLIFF(traindata);
|
---|
71 | }
|
---|
72 |
|
---|
73 | /**
|
---|
74 | * <p>
|
---|
75 | * Applies the CLIFF relevancy filter to the data.
|
---|
76 | * </p>
|
---|
77 | *
|
---|
78 | * @param data
|
---|
79 | * the data
|
---|
80 | * @return CLIFF-filtered data
|
---|
81 | */
|
---|
82 | protected Instances applyCLIFF(Instances data) {
|
---|
83 | final double[][] powerAttributes = new double[data.size()][data.numAttributes()];
|
---|
84 | final double[] powerEntity = new double[data.size()];
|
---|
85 |
|
---|
86 | final int[] counts = data.attributeStats(data.classIndex()).nominalCounts;
|
---|
87 | final double probDefect = data.numInstances() / (double) counts[1];
|
---|
88 |
|
---|
89 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
90 | if (data.attribute(j) != data.classAttribute()) {
|
---|
91 | final double[] ranges = getRanges(data, j);
|
---|
92 | final double[] probDefectRange = getRangeProbabilities(data, j, ranges);
|
---|
93 |
|
---|
94 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
95 | final double value = data.instance(i).value(j);
|
---|
96 | final int range = determineRange(ranges, value);
|
---|
97 | double probClass, probNotClass, probRangeClass, probRangeNotClass;
|
---|
98 | if (data.instance(i).classValue() == 1) {
|
---|
99 | probClass = probDefect;
|
---|
100 | probNotClass = 1.0 - probDefect;
|
---|
101 | probRangeClass = probDefectRange[range];
|
---|
102 | probRangeNotClass = 1.0 - probDefectRange[range];
|
---|
103 | }
|
---|
104 | else {
|
---|
105 | probClass = 1.0 - probDefect;
|
---|
106 | probNotClass = probDefect;
|
---|
107 | probRangeClass = 1.0 - probDefectRange[range];
|
---|
108 | probRangeNotClass = probDefectRange[range];
|
---|
109 | }
|
---|
110 | powerAttributes[i][j] = Math.pow(probRangeClass, 2.0) /
|
---|
111 | (probRangeClass * probClass + probRangeNotClass * probNotClass);
|
---|
112 | }
|
---|
113 | }
|
---|
114 | }
|
---|
115 |
|
---|
116 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
117 | powerEntity[i] = 1.0;
|
---|
118 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
119 | powerEntity[i] *= powerAttributes[i][j];
|
---|
120 | }
|
---|
121 | }
|
---|
122 | double[] sortedPower = powerEntity.clone();
|
---|
123 | Arrays.sort(sortedPower);
|
---|
124 | double cutOff = sortedPower[(int) (data.numInstances() * (1 - percentage))];
|
---|
125 |
|
---|
126 | final Instances selected = new Instances(data);
|
---|
127 | selected.delete();
|
---|
128 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
129 | if (powerEntity[i] >= cutOff) {
|
---|
130 | selected.add(data.instance(i));
|
---|
131 | }
|
---|
132 | }
|
---|
133 | return selected;
|
---|
134 | }
|
---|
135 |
|
---|
136 | /**
|
---|
137 | * <p>
|
---|
138 | * Gets an array with the ranges from the data for a given attribute
|
---|
139 | * </p>
|
---|
140 | *
|
---|
141 | * @param data
|
---|
142 | * the data
|
---|
143 | * @param j
|
---|
144 | * index of the attribute
|
---|
145 | * @return the ranges for the attribute
|
---|
146 | */
|
---|
147 | private double[] getRanges(Instances data, int j) {
|
---|
148 | double[] values = new double[numRanges + 1];
|
---|
149 | for (int k = 0; k < numRanges; k++) {
|
---|
150 | values[k] = data.kthSmallestValue(j, (int) (data.size() * (k + 1.0) / numRanges));
|
---|
151 | }
|
---|
152 | values[numRanges] = data.attributeStats(j).numericStats.max;
|
---|
153 | return values;
|
---|
154 | }
|
---|
155 |
|
---|
156 | /**
|
---|
157 | * <p>
|
---|
158 | * Gets the probabilities of a positive prediction for each range for a given attribute
|
---|
159 | * </p>
|
---|
160 | *
|
---|
161 | * @param data
|
---|
162 | * the data
|
---|
163 | * @param j
|
---|
164 | * index of the attribute
|
---|
165 | * @param ranges
|
---|
166 | * the ranges
|
---|
167 | * @return probabilities for each range
|
---|
168 | */
|
---|
169 | private double[] getRangeProbabilities(Instances data, int j, double[] ranges) {
|
---|
170 | double[] probDefectRange = new double[numRanges];
|
---|
171 | int[] countRange = new int[numRanges];
|
---|
172 | int[] countDefect = new int[numRanges];
|
---|
173 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
174 | int range = determineRange(ranges, data.instance(i).value(j));
|
---|
175 | countRange[range]++;
|
---|
176 | if (data.instance(i).classValue() == 1) {
|
---|
177 | countDefect[range]++;
|
---|
178 | }
|
---|
179 |
|
---|
180 | }
|
---|
181 | for (int k = 0; k < numRanges; k++) {
|
---|
182 | probDefectRange[k] = ((double) countDefect[k]) / countRange[k];
|
---|
183 | }
|
---|
184 | return probDefectRange;
|
---|
185 | }
|
---|
186 |
|
---|
187 | /**
|
---|
188 | * <p>
|
---|
189 | * Determines the range of a give value
|
---|
190 | * </p>
|
---|
191 | *
|
---|
192 | * @param ranges
|
---|
193 | * the possible ranges
|
---|
194 | * @param value
|
---|
195 | * the value
|
---|
196 | * @return index of the range
|
---|
197 | */
|
---|
198 | private int determineRange(double[] ranges, double value) {
|
---|
199 | for (int k = 0; k < numRanges; k++) {
|
---|
200 | if (value <= ranges[k + 1]) {
|
---|
201 | return k;
|
---|
202 | }
|
---|
203 | }
|
---|
204 | throw new RuntimeException("invalid range or value");
|
---|
205 | }
|
---|
206 | }
|
---|