[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[50] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
| 15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
| 16 |
|
---|
| 17 | import java.util.Arrays;
|
---|
| 18 |
|
---|
| 19 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
| 20 |
|
---|
| 21 | import weka.core.Instances;
|
---|
| 22 |
|
---|
| 23 | /**
|
---|
| 24 | * Implements CLIFF data pruning.
|
---|
| 25 | *
|
---|
| 26 | * @author Steffen Herbold
|
---|
| 27 | */
|
---|
| 28 | public class CLIFF implements IPointWiseDataselectionStrategy, ISetWiseDataselectionStrategy {
|
---|
| 29 |
|
---|
[135] | 30 | /**
|
---|
| 31 | * percentage of data selected
|
---|
| 32 | */
|
---|
[50] | 33 | private double percentage = 0.10;
|
---|
[135] | 34 |
|
---|
| 35 | /**
|
---|
| 36 | * number of ranges considered
|
---|
| 37 | */
|
---|
[50] | 38 | private final int numRanges = 10;
|
---|
| 39 |
|
---|
| 40 | /**
|
---|
| 41 | * Sets the number of neighbors.
|
---|
| 42 | *
|
---|
| 43 | * @param parameters
|
---|
| 44 | * number of neighbors
|
---|
| 45 | */
|
---|
| 46 | @Override
|
---|
| 47 | public void setParameter(String parameters) {
|
---|
[135] | 48 | if (parameters != null) {
|
---|
[50] | 49 | percentage = Double.parseDouble(parameters);
|
---|
| 50 | }
|
---|
| 51 | }
|
---|
[135] | 52 |
|
---|
| 53 | /*
|
---|
[50] | 54 | * @see de.ugoe.cs.cpdp.dataselection.SetWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
[135] | 55 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
[50] | 56 | */
|
---|
| 57 | @Override
|
---|
| 58 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
[135] | 59 | for (Instances traindata : traindataSet) {
|
---|
[50] | 60 | applyCLIFF(traindata);
|
---|
| 61 | }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
[135] | 64 | /*
|
---|
[50] | 65 | * @see de.ugoe.cs.cpdp.dataselection.PointWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
[135] | 66 | * weka.core.Instances)
|
---|
[50] | 67 | */
|
---|
| 68 | @Override
|
---|
| 69 | public Instances apply(Instances testdata, Instances traindata) {
|
---|
| 70 | return applyCLIFF(traindata);
|
---|
| 71 | }
|
---|
| 72 |
|
---|
[135] | 73 | /**
|
---|
| 74 | * <p>
|
---|
| 75 | * Applies the CLIFF relevancy filter to the data.
|
---|
| 76 | * </p>
|
---|
| 77 | *
|
---|
| 78 | * @param data
|
---|
| 79 | * the data
|
---|
| 80 | * @return CLIFF-filtered data
|
---|
| 81 | */
|
---|
[120] | 82 | protected Instances applyCLIFF(Instances data) {
|
---|
[50] | 83 | final double[][] powerAttributes = new double[data.size()][data.numAttributes()];
|
---|
| 84 | final double[] powerEntity = new double[data.size()];
|
---|
[135] | 85 |
|
---|
[50] | 86 | final int[] counts = data.attributeStats(data.classIndex()).nominalCounts;
|
---|
| 87 | final double probDefect = data.numInstances() / (double) counts[1];
|
---|
[135] | 88 |
|
---|
| 89 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
| 90 | if (data.attribute(j) != data.classAttribute()) {
|
---|
[50] | 91 | final double[] ranges = getRanges(data, j);
|
---|
| 92 | final double[] probDefectRange = getRangeProbabilities(data, j, ranges);
|
---|
[135] | 93 |
|
---|
| 94 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
[50] | 95 | final double value = data.instance(i).value(j);
|
---|
| 96 | final int range = determineRange(ranges, value);
|
---|
| 97 | double probClass, probNotClass, probRangeClass, probRangeNotClass;
|
---|
[135] | 98 | if (data.instance(i).classValue() == 1) {
|
---|
[50] | 99 | probClass = probDefect;
|
---|
[135] | 100 | probNotClass = 1.0 - probDefect;
|
---|
[50] | 101 | probRangeClass = probDefectRange[range];
|
---|
[135] | 102 | probRangeNotClass = 1.0 - probDefectRange[range];
|
---|
| 103 | }
|
---|
| 104 | else {
|
---|
| 105 | probClass = 1.0 - probDefect;
|
---|
[50] | 106 | probNotClass = probDefect;
|
---|
[135] | 107 | probRangeClass = 1.0 - probDefectRange[range];
|
---|
[50] | 108 | probRangeNotClass = probDefectRange[range];
|
---|
| 109 | }
|
---|
[135] | 110 | powerAttributes[i][j] = Math.pow(probRangeClass, 2.0) /
|
---|
| 111 | (probRangeClass * probClass + probRangeNotClass * probNotClass);
|
---|
[50] | 112 | }
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
[135] | 115 |
|
---|
| 116 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
[50] | 117 | powerEntity[i] = 1.0;
|
---|
[135] | 118 | for (int j = 0; j < data.numAttributes(); j++) {
|
---|
[50] | 119 | powerEntity[i] *= powerAttributes[i][j];
|
---|
| 120 | }
|
---|
| 121 | }
|
---|
| 122 | double[] sortedPower = powerEntity.clone();
|
---|
| 123 | Arrays.sort(sortedPower);
|
---|
[135] | 124 | double cutOff = sortedPower[(int) (data.numInstances() * (1 - percentage))];
|
---|
[50] | 125 |
|
---|
| 126 | final Instances selected = new Instances(data);
|
---|
| 127 | selected.delete();
|
---|
[135] | 128 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
| 129 | if (powerEntity[i] >= cutOff) {
|
---|
[50] | 130 | selected.add(data.instance(i));
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | return selected;
|
---|
| 134 | }
|
---|
[135] | 135 |
|
---|
| 136 | /**
|
---|
| 137 | * <p>
|
---|
| 138 | * Gets an array with the ranges from the data for a given attribute
|
---|
| 139 | * </p>
|
---|
| 140 | *
|
---|
| 141 | * @param data
|
---|
| 142 | * the data
|
---|
| 143 | * @param j
|
---|
| 144 | * index of the attribute
|
---|
| 145 | * @return the ranges for the attribute
|
---|
| 146 | */
|
---|
[50] | 147 | private double[] getRanges(Instances data, int j) {
|
---|
[135] | 148 | double[] values = new double[numRanges + 1];
|
---|
| 149 | for (int k = 0; k < numRanges; k++) {
|
---|
| 150 | values[k] = data.kthSmallestValue(j, (int) (data.size() * (k + 1.0) / numRanges));
|
---|
[50] | 151 | }
|
---|
| 152 | values[numRanges] = data.attributeStats(j).numericStats.max;
|
---|
| 153 | return values;
|
---|
| 154 | }
|
---|
[135] | 155 |
|
---|
| 156 | /**
|
---|
| 157 | * <p>
|
---|
| 158 | * Gets the probabilities of a positive prediction for each range for a given attribute
|
---|
| 159 | * </p>
|
---|
| 160 | *
|
---|
| 161 | * @param data
|
---|
| 162 | * the data
|
---|
| 163 | * @param j
|
---|
| 164 | * index of the attribute
|
---|
| 165 | * @param ranges
|
---|
| 166 | * the ranges
|
---|
| 167 | * @return probabilities for each range
|
---|
| 168 | */
|
---|
[50] | 169 | private double[] getRangeProbabilities(Instances data, int j, double[] ranges) {
|
---|
| 170 | double[] probDefectRange = new double[numRanges];
|
---|
| 171 | int[] countRange = new int[numRanges];
|
---|
| 172 | int[] countDefect = new int[numRanges];
|
---|
[135] | 173 | for (int i = 0; i < data.numInstances(); i++) {
|
---|
| 174 | int range = determineRange(ranges, data.instance(i).value(j));
|
---|
[50] | 175 | countRange[range]++;
|
---|
[135] | 176 | if (data.instance(i).classValue() == 1) {
|
---|
[50] | 177 | countDefect[range]++;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | }
|
---|
[135] | 181 | for (int k = 0; k < numRanges; k++) {
|
---|
[50] | 182 | probDefectRange[k] = ((double) countDefect[k]) / countRange[k];
|
---|
| 183 | }
|
---|
| 184 | return probDefectRange;
|
---|
| 185 | }
|
---|
[135] | 186 |
|
---|
| 187 | /**
|
---|
| 188 | * <p>
|
---|
| 189 | * Determines the range of a give value
|
---|
| 190 | * </p>
|
---|
| 191 | *
|
---|
| 192 | * @param ranges
|
---|
| 193 | * the possible ranges
|
---|
| 194 | * @param value
|
---|
| 195 | * the value
|
---|
| 196 | * @return index of the range
|
---|
| 197 | */
|
---|
[50] | 198 | private int determineRange(double[] ranges, double value) {
|
---|
[135] | 199 | for (int k = 0; k < numRanges; k++) {
|
---|
| 200 | if (value <= ranges[k + 1]) {
|
---|
[50] | 201 | return k;
|
---|
| 202 | }
|
---|
| 203 | }
|
---|
| 204 | throw new RuntimeException("invalid range or value");
|
---|
| 205 | }
|
---|
| 206 | }
|
---|