1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
2 | //
|
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
4 | // you may not use this file except in compliance with the License.
|
---|
5 | // You may obtain a copy of the License at
|
---|
6 | //
|
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
8 | //
|
---|
9 | // Unless required by applicable law or agreed to in writing, software
|
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
12 | // See the License for the specific language governing permissions and
|
---|
13 | // limitations under the License.
|
---|
14 |
|
---|
15 | package de.ugoe.cs.cpdp.dataselection;
|
---|
16 |
|
---|
17 | import java.util.Arrays;
|
---|
18 |
|
---|
19 | import org.apache.commons.collections4.list.SetUniqueList;
|
---|
20 |
|
---|
21 | import weka.core.Instances;
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * Implements CLIFF data pruning.
|
---|
25 | *
|
---|
26 | * @author Steffen Herbold
|
---|
27 | */
|
---|
28 | public class CLIFF implements IPointWiseDataselectionStrategy, ISetWiseDataselectionStrategy {
|
---|
29 |
|
---|
30 | private double percentage = 0.10;
|
---|
31 |
|
---|
32 | private final int numRanges = 10;
|
---|
33 |
|
---|
34 | /**
|
---|
35 | * Sets the number of neighbors.
|
---|
36 | *
|
---|
37 | * @param parameters
|
---|
38 | * number of neighbors
|
---|
39 | */
|
---|
40 | @Override
|
---|
41 | public void setParameter(String parameters) {
|
---|
42 | if( parameters!=null ) {
|
---|
43 | percentage = Double.parseDouble(parameters);
|
---|
44 | }
|
---|
45 | }
|
---|
46 |
|
---|
47 | /**
|
---|
48 | * @see de.ugoe.cs.cpdp.dataselection.SetWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
49 | * org.apache.commons.collections4.list.SetUniqueList)
|
---|
50 | */
|
---|
51 | @Override
|
---|
52 | public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
|
---|
53 | for( Instances traindata : traindataSet ) {
|
---|
54 | applyCLIFF(traindata);
|
---|
55 | }
|
---|
56 | }
|
---|
57 |
|
---|
58 | /**
|
---|
59 | * @see de.ugoe.cs.cpdp.dataselection.PointWiseDataselectionStrategy#apply(weka.core.Instances,
|
---|
60 | * weka.core.Instances)
|
---|
61 | */
|
---|
62 | @Override
|
---|
63 | public Instances apply(Instances testdata, Instances traindata) {
|
---|
64 | return applyCLIFF(traindata);
|
---|
65 | }
|
---|
66 |
|
---|
67 | private Instances applyCLIFF(Instances data) {
|
---|
68 | final double[][] powerAttributes = new double[data.size()][data.numAttributes()];
|
---|
69 | final double[] powerEntity = new double[data.size()];
|
---|
70 |
|
---|
71 | final int[] counts = data.attributeStats(data.classIndex()).nominalCounts;
|
---|
72 | final double probDefect = data.numInstances() / (double) counts[1];
|
---|
73 |
|
---|
74 | for( int j=0; j<data.numAttributes(); j++ ) {
|
---|
75 | if( data.attribute(j)!=data.classAttribute()) {
|
---|
76 | final double[] ranges = getRanges(data, j);
|
---|
77 | final double[] probDefectRange = getRangeProbabilities(data, j, ranges);
|
---|
78 |
|
---|
79 | for( int i=0 ; i<data.numInstances() ; i++ ) {
|
---|
80 | final double value = data.instance(i).value(j);
|
---|
81 | final int range = determineRange(ranges, value);
|
---|
82 | double probClass, probNotClass, probRangeClass, probRangeNotClass;
|
---|
83 | if( data.instance(i).classValue()==1 ) {
|
---|
84 | probClass = probDefect;
|
---|
85 | probNotClass = 1.0-probDefect;
|
---|
86 | probRangeClass = probDefectRange[range];
|
---|
87 | probRangeNotClass = 1.0-probDefectRange[range];
|
---|
88 | } else {
|
---|
89 | probClass = 1.0-probDefect;
|
---|
90 | probNotClass = probDefect;
|
---|
91 | probRangeClass = 1.0-probDefectRange[range];
|
---|
92 | probRangeNotClass = probDefectRange[range];
|
---|
93 | }
|
---|
94 | powerAttributes[i][j] = Math.pow(probRangeClass, 2.0)/(probRangeClass*probClass+probRangeNotClass*probNotClass);
|
---|
95 | }
|
---|
96 | }
|
---|
97 | }
|
---|
98 |
|
---|
99 | for( int i=0; i<data.numInstances(); i++ ) {
|
---|
100 | powerEntity[i] = 1.0;
|
---|
101 | for (int j=0; j<data.numAttributes() ; j++ ) {
|
---|
102 | powerEntity[i] *= powerAttributes[i][j];
|
---|
103 | }
|
---|
104 | }
|
---|
105 | double[] sortedPower = powerEntity.clone();
|
---|
106 | Arrays.sort(sortedPower);
|
---|
107 | double cutOff = sortedPower[(int) (data.numInstances()*(1-percentage))];
|
---|
108 |
|
---|
109 | final Instances selected = new Instances(data);
|
---|
110 | selected.delete();
|
---|
111 | for (int i=0; i<data.numInstances(); i++) {
|
---|
112 | if( powerEntity[i]>=cutOff ) {
|
---|
113 | selected.add(data.instance(i));
|
---|
114 | }
|
---|
115 | }
|
---|
116 | return selected;
|
---|
117 | }
|
---|
118 |
|
---|
119 | private double[] getRanges(Instances data, int j) {
|
---|
120 | double[] values = new double[numRanges+1];
|
---|
121 | for( int k=0; k<numRanges; k++ ) {
|
---|
122 | values[k] = data.kthSmallestValue(j, (int) (data.size()*(k+1.0)/numRanges));
|
---|
123 | }
|
---|
124 | values[numRanges] = data.attributeStats(j).numericStats.max;
|
---|
125 | return values;
|
---|
126 | }
|
---|
127 |
|
---|
128 | private double[] getRangeProbabilities(Instances data, int j, double[] ranges) {
|
---|
129 | double[] probDefectRange = new double[numRanges];
|
---|
130 | int[] countRange = new int[numRanges];
|
---|
131 | int[] countDefect = new int[numRanges];
|
---|
132 | for( int i=0; i<data.numInstances() ; i++ ) {
|
---|
133 | int range = determineRange(ranges, data.instance(i).value(j));
|
---|
134 | countRange[range]++;
|
---|
135 | if( data.instance(i).classValue()== 1 ) {
|
---|
136 | countDefect[range]++;
|
---|
137 | }
|
---|
138 |
|
---|
139 | }
|
---|
140 | for( int k=0; k<numRanges; k++ ) {
|
---|
141 | probDefectRange[k] = ((double) countDefect[k]) / countRange[k];
|
---|
142 | }
|
---|
143 | return probDefectRange;
|
---|
144 | }
|
---|
145 |
|
---|
146 | private int determineRange(double[] ranges, double value) {
|
---|
147 | for( int k=0; k<numRanges; k++ ) {
|
---|
148 | if( value<=ranges[k+1] ) {
|
---|
149 | return k;
|
---|
150 | }
|
---|
151 | }
|
---|
152 | throw new RuntimeException("invalid range or value");
|
---|
153 | }
|
---|
154 | }
|
---|