source: trunk/CrossPare/src/de/ugoe/cs/cpdp/dataselection/CLIFF.java @ 79

Last change on this file since 79 was 50, checked in by sherbold, 9 years ago
  • implemented MORPH and CLIFF after Peters et al.
  • Property svn:mime-type set to text/plain
File size: 5.7 KB
Line 
1// Copyright 2015 Georg-August-Universität Göttingen, Germany
2//
3//   Licensed under the Apache License, Version 2.0 (the "License");
4//   you may not use this file except in compliance with the License.
5//   You may obtain a copy of the License at
6//
7//       http://www.apache.org/licenses/LICENSE-2.0
8//
9//   Unless required by applicable law or agreed to in writing, software
10//   distributed under the License is distributed on an "AS IS" BASIS,
11//   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12//   See the License for the specific language governing permissions and
13//   limitations under the License.
14
15package de.ugoe.cs.cpdp.dataselection;
16
17import java.util.Arrays;
18
19import org.apache.commons.collections4.list.SetUniqueList;
20
21import weka.core.Instances;
22
23/**
24 * Implements CLIFF data pruning.
25 *
26 * @author Steffen Herbold
27 */
28public class CLIFF implements IPointWiseDataselectionStrategy, ISetWiseDataselectionStrategy {
29
30    private double percentage = 0.10;
31   
32    private final int numRanges = 10;
33
34    /**
35     * Sets the number of neighbors.
36     *
37     * @param parameters
38     *            number of neighbors
39     */
40    @Override
41    public void setParameter(String parameters) {
42        if( parameters!=null ) {
43            percentage = Double.parseDouble(parameters);
44        }
45    }
46   
47    /**
48     * @see de.ugoe.cs.cpdp.dataselection.SetWiseDataselectionStrategy#apply(weka.core.Instances,
49     *      org.apache.commons.collections4.list.SetUniqueList)
50     */
51    @Override
52    public void apply(Instances testdata, SetUniqueList<Instances> traindataSet) {
53        for( Instances traindata : traindataSet ) {
54            applyCLIFF(traindata);
55        }
56    }
57
58    /**
59     * @see de.ugoe.cs.cpdp.dataselection.PointWiseDataselectionStrategy#apply(weka.core.Instances,
60     *      weka.core.Instances)
61     */
62    @Override
63    public Instances apply(Instances testdata, Instances traindata) {
64        return applyCLIFF(traindata);
65    }
66
67    private Instances applyCLIFF(Instances data) {
68        final double[][] powerAttributes = new double[data.size()][data.numAttributes()];
69        final double[] powerEntity = new double[data.size()];
70       
71        final int[] counts = data.attributeStats(data.classIndex()).nominalCounts;
72        final double probDefect = data.numInstances() / (double) counts[1];
73       
74        for( int j=0; j<data.numAttributes(); j++ ) {
75            if( data.attribute(j)!=data.classAttribute()) {
76                final double[] ranges = getRanges(data, j);
77                final double[] probDefectRange = getRangeProbabilities(data, j, ranges);
78               
79                for( int i=0 ; i<data.numInstances() ; i++ ) {
80                    final double value = data.instance(i).value(j);
81                    final int range = determineRange(ranges, value);
82                    double probClass, probNotClass, probRangeClass, probRangeNotClass;
83                    if( data.instance(i).classValue()==1 ) {
84                        probClass = probDefect;
85                        probNotClass = 1.0-probDefect;
86                        probRangeClass = probDefectRange[range];
87                        probRangeNotClass = 1.0-probDefectRange[range];
88                    } else {
89                        probClass = 1.0-probDefect;
90                        probNotClass = probDefect;
91                        probRangeClass = 1.0-probDefectRange[range];
92                        probRangeNotClass = probDefectRange[range];
93                    }
94                    powerAttributes[i][j] = Math.pow(probRangeClass, 2.0)/(probRangeClass*probClass+probRangeNotClass*probNotClass);
95                }
96            }
97        }
98       
99        for( int i=0; i<data.numInstances(); i++ ) {
100            powerEntity[i] = 1.0;
101            for (int j=0; j<data.numAttributes() ; j++ ) {
102                powerEntity[i] *= powerAttributes[i][j];
103            }
104        }
105        double[] sortedPower = powerEntity.clone();
106        Arrays.sort(sortedPower);
107        double cutOff = sortedPower[(int) (data.numInstances()*(1-percentage))];
108
109        final Instances selected = new Instances(data);
110        selected.delete();
111        for (int i=0; i<data.numInstances(); i++) {
112            if( powerEntity[i]>=cutOff ) {
113                selected.add(data.instance(i));
114            }
115        }
116        return selected;
117    }
118   
119    private double[] getRanges(Instances data, int j) {
120        double[] values = new double[numRanges+1];
121        for( int k=0; k<numRanges; k++ ) {
122            values[k] = data.kthSmallestValue(j, (int) (data.size()*(k+1.0)/numRanges));
123        }
124        values[numRanges] = data.attributeStats(j).numericStats.max;
125        return values;
126    }
127   
128    private double[] getRangeProbabilities(Instances data, int j, double[] ranges) {
129        double[] probDefectRange = new double[numRanges];
130        int[] countRange = new int[numRanges];
131        int[] countDefect = new int[numRanges];
132        for( int i=0; i<data.numInstances() ; i++ ) {
133            int range = determineRange(ranges, data.instance(i).value(j));
134            countRange[range]++;
135            if( data.instance(i).classValue()== 1 ) {
136                countDefect[range]++;
137            }
138
139        }
140        for( int k=0; k<numRanges; k++ ) {
141            probDefectRange[k] = ((double) countDefect[k]) / countRange[k];
142        }
143        return probDefectRange;
144    }
145   
146    private int determineRange(double[] ranges, double value) {
147        for( int k=0; k<numRanges; k++ ) {
148            if( value<=ranges[k+1] ) {
149                return k;
150            }
151        }
152        throw new RuntimeException("invalid range or value");
153    }
154}
Note: See TracBrowser for help on using the repository browser.