[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
[44] | 2 | // |
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
| 4 | // you may not use this file except in compliance with the License. |
---|
| 5 | // You may obtain a copy of the License at |
---|
| 6 | // |
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
| 8 | // |
---|
| 9 | // Unless required by applicable law or agreed to in writing, software |
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
| 12 | // See the License for the specific language governing permissions and |
---|
| 13 | // limitations under the License. |
---|
| 14 | |
---|
| 15 | package de.ugoe.cs.cpdp.training; |
---|
| 16 | |
---|
| 17 | import java.util.ArrayList; |
---|
[47] | 18 | import java.util.Arrays; |
---|
| 19 | import java.util.Collections; |
---|
| 20 | import java.util.Comparator; |
---|
[44] | 21 | import java.util.HashMap; |
---|
| 22 | import java.util.Iterator; |
---|
[47] | 23 | import java.util.LinkedHashMap; |
---|
| 24 | import java.util.LinkedList; |
---|
| 25 | import java.util.List; |
---|
[44] | 26 | import java.util.Map; |
---|
[139] | 27 | import java.util.Map.Entry; |
---|
[44] | 28 | import java.util.logging.Level; |
---|
[47] | 29 | |
---|
[44] | 30 | import java.util.Random; |
---|
| 31 | |
---|
| 32 | import org.apache.commons.collections4.list.SetUniqueList; |
---|
[45] | 33 | import org.apache.commons.math3.stat.correlation.SpearmansCorrelation; |
---|
| 34 | import org.apache.commons.math3.stat.inference.KolmogorovSmirnovTest; |
---|
[44] | 35 | |
---|
| 36 | import de.ugoe.cs.util.console.Console; |
---|
[47] | 37 | import weka.attributeSelection.SignificanceAttributeEval; |
---|
[44] | 38 | import weka.classifiers.AbstractClassifier; |
---|
| 39 | import weka.classifiers.Classifier; |
---|
| 40 | import weka.core.Attribute; |
---|
| 41 | import weka.core.DenseInstance; |
---|
| 42 | import weka.core.Instance; |
---|
| 43 | import weka.core.Instances; |
---|
| 44 | |
---|
[137] | 45 | /** |
---|
[139] | 46 | * Implements Heterogenous Defect Prediction after Nam et al. 2015. |
---|
[137] | 47 | * |
---|
[141] | 48 | * We extend WekaBaseTraining because we have to Wrap the Classifier to use MetricMatching. This |
---|
| 49 | * also means we can use any Weka Classifier not just LogisticRegression. |
---|
[138] | 50 | * |
---|
[141] | 51 | * Config: <setwisetestdataawaretrainer name="MetricMatchingTraining" param= |
---|
| 52 | * "Logistic weka.classifiers.functions.Logistic" threshold="0.05" method="spearman"/> Instead of |
---|
| 53 | * spearman metchod it also takes ks, percentile. Instead of Logistic every other weka classifier |
---|
| 54 | * can be chosen. |
---|
[140] | 55 | * |
---|
[141] | 56 | * Future work: implement chisquare test in addition to significance for attribute selection |
---|
| 57 | * http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/stat/inference/ |
---|
| 58 | * ChiSquareTest.html use chiSquareTestDataSetsComparison |
---|
[137] | 59 | */ |
---|
[141] | 60 | public class MetricMatchingTraining extends WekaBaseTraining |
---|
| 61 | implements ISetWiseTestdataAwareTrainingStrategy |
---|
| 62 | { |
---|
[44] | 63 | |
---|
[138] | 64 | private MetricMatch mm = null; |
---|
[140] | 65 | private Classifier classifier = null; |
---|
[141] | 66 | |
---|
[45] | 67 | private String method; |
---|
| 68 | private float threshold; |
---|
[141] | 69 | |
---|
[44] | 70 | /** |
---|
[139] | 71 | * We wrap the classifier here because of classifyInstance with our MetricMatchingClassfier |
---|
[141] | 72 | * |
---|
[44] | 73 | * @return |
---|
| 74 | */ |
---|
| 75 | @Override |
---|
| 76 | public Classifier getClassifier() { |
---|
| 77 | return this.classifier; |
---|
| 78 | } |
---|
| 79 | |
---|
[138] | 80 | /** |
---|
| 81 | * Set similarity measure method. |
---|
| 82 | */ |
---|
[45] | 83 | @Override |
---|
| 84 | public void setMethod(String method) { |
---|
| 85 | this.method = method; |
---|
| 86 | } |
---|
| 87 | |
---|
[138] | 88 | /** |
---|
| 89 | * Set threshold for similarity measure. |
---|
| 90 | */ |
---|
[45] | 91 | @Override |
---|
| 92 | public void setThreshold(String threshold) { |
---|
| 93 | this.threshold = Float.parseFloat(threshold); |
---|
| 94 | } |
---|
| 95 | |
---|
[141] | 96 | /** |
---|
| 97 | * We need the test data instances to do a metric matching, so in this special case we get this |
---|
| 98 | * data before evaluation. |
---|
| 99 | */ |
---|
| 100 | @Override |
---|
| 101 | public void apply(SetUniqueList<Instances> traindataSet, Instances testdata) { |
---|
| 102 | // reset these for each run |
---|
| 103 | this.mm = null; |
---|
| 104 | this.classifier = null; |
---|
[137] | 105 | |
---|
[141] | 106 | double score = 0; // matching score to select the best matching training data from the set |
---|
| 107 | int num = 0; |
---|
| 108 | int biggest_num = 0; |
---|
| 109 | MetricMatch tmp; |
---|
| 110 | for (Instances traindata : traindataSet) { |
---|
| 111 | num++; |
---|
[48] | 112 | |
---|
[141] | 113 | tmp = new MetricMatch(traindata, testdata); |
---|
[44] | 114 | |
---|
[141] | 115 | // metric selection may create error, continue to next training set |
---|
| 116 | try { |
---|
| 117 | tmp.attributeSelection(); |
---|
| 118 | tmp.matchAttributes(this.method, this.threshold); |
---|
| 119 | } |
---|
| 120 | catch (Exception e) { |
---|
| 121 | e.printStackTrace(); |
---|
| 122 | throw new RuntimeException(e); |
---|
| 123 | } |
---|
[44] | 124 | |
---|
[141] | 125 | // we only select the training data from our set with the most matching attributes |
---|
| 126 | if (tmp.getScore() > score && tmp.attributes.size() > 0) { |
---|
| 127 | score = tmp.getScore(); |
---|
| 128 | this.mm = tmp; |
---|
| 129 | biggest_num = num; |
---|
| 130 | } |
---|
| 131 | } |
---|
[44] | 132 | |
---|
[141] | 133 | // if we have found a matching instance we use it, log information about the match for |
---|
| 134 | // additional eval later |
---|
| 135 | Instances ilist = null; |
---|
| 136 | if (this.mm != null) { |
---|
| 137 | ilist = this.mm.getMatchedTrain(); |
---|
| 138 | Console.traceln(Level.INFO, "[MATCH FOUND] match: [" + biggest_num + "], score: [" + |
---|
| 139 | score + "], instances: [" + ilist.size() + "], attributes: [" + |
---|
| 140 | this.mm.attributes.size() + "], ilist attrs: [" + ilist.numAttributes() + "]"); |
---|
| 141 | for (Map.Entry<Integer, Integer> attmatch : this.mm.attributes.entrySet()) { |
---|
| 142 | Console.traceln(Level.INFO, "[MATCHED ATTRIBUTE] source attribute: [" + |
---|
| 143 | this.mm.train.attribute(attmatch.getKey()).name() + "], target attribute: [" + |
---|
| 144 | this.mm.test.attribute(attmatch.getValue()).name() + "]"); |
---|
| 145 | } |
---|
| 146 | } |
---|
| 147 | else { |
---|
| 148 | Console.traceln(Level.INFO, "[NO MATCH FOUND]"); |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | // if we have a match we build the MetricMatchingClassifier, if not we fall back to FixClass |
---|
| 152 | // Classifier |
---|
| 153 | try { |
---|
| 154 | if (this.mm != null) { |
---|
| 155 | this.classifier = new MetricMatchingClassifier(); |
---|
| 156 | this.classifier.buildClassifier(ilist); |
---|
| 157 | ((MetricMatchingClassifier) this.classifier).setMetricMatching(this.mm); |
---|
| 158 | } |
---|
| 159 | else { |
---|
| 160 | this.classifier = new FixClass(); |
---|
| 161 | this.classifier.buildClassifier(ilist); // this is null, but the FixClass Classifier |
---|
| 162 | // does not use it anyway |
---|
| 163 | } |
---|
| 164 | } |
---|
| 165 | catch (Exception e) { |
---|
| 166 | e.printStackTrace(); |
---|
| 167 | throw new RuntimeException(e); |
---|
| 168 | } |
---|
| 169 | } |
---|
| 170 | |
---|
| 171 | /** |
---|
| 172 | * Encapsulates the classifier configured with WekaBase within but use metric matching. This |
---|
| 173 | * allows us to use any Weka classifier with Heterogenous Defect Prediction. |
---|
| 174 | */ |
---|
| 175 | public class MetricMatchingClassifier extends AbstractClassifier { |
---|
| 176 | |
---|
| 177 | private static final long serialVersionUID = -1342172153473770935L; |
---|
| 178 | private MetricMatch mm; |
---|
| 179 | private Classifier classifier; |
---|
| 180 | |
---|
| 181 | @Override |
---|
| 182 | public void buildClassifier(Instances traindata) throws Exception { |
---|
| 183 | this.classifier = setupClassifier(); |
---|
| 184 | this.classifier.buildClassifier(traindata); |
---|
| 185 | } |
---|
| 186 | |
---|
| 187 | /** |
---|
| 188 | * Sets the MetricMatch instance so that we can use matched test data later. |
---|
| 189 | * |
---|
| 190 | * @param mm |
---|
| 191 | */ |
---|
| 192 | public void setMetricMatching(MetricMatch mm) { |
---|
| 193 | this.mm = mm; |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | /** |
---|
| 197 | * Here we can not do the metric matching because we only get one instance. Therefore we |
---|
| 198 | * need a MetricMatch instance beforehand to use here. |
---|
| 199 | */ |
---|
| 200 | public double classifyInstance(Instance testdata) { |
---|
| 201 | // get a copy of testdata Instance with only the matched attributes |
---|
| 202 | Instance ntest = this.mm.getMatchedTestInstance(testdata); |
---|
| 203 | |
---|
| 204 | double ret = 0.0; |
---|
| 205 | try { |
---|
| 206 | ret = this.classifier.classifyInstance(ntest); |
---|
| 207 | } |
---|
| 208 | catch (Exception e) { |
---|
| 209 | e.printStackTrace(); |
---|
| 210 | throw new RuntimeException(e); |
---|
| 211 | } |
---|
| 212 | |
---|
| 213 | return ret; |
---|
| 214 | } |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | /** |
---|
| 218 | * Encapsulates one MetricMatching process. One source (train) matches against one target |
---|
| 219 | * (test). |
---|
| 220 | */ |
---|
[44] | 221 | public class MetricMatch { |
---|
[141] | 222 | Instances train; |
---|
| 223 | Instances test; |
---|
[137] | 224 | |
---|
[141] | 225 | // used to sum up the matching values of all attributes |
---|
| 226 | protected double p_sum = 0; |
---|
| 227 | |
---|
| 228 | // attribute matching, train -> test |
---|
| 229 | HashMap<Integer, Integer> attributes = new HashMap<Integer, Integer>(); |
---|
| 230 | |
---|
| 231 | // used for similarity tests |
---|
| 232 | protected ArrayList<double[]> train_values; |
---|
| 233 | protected ArrayList<double[]> test_values; |
---|
| 234 | |
---|
| 235 | public MetricMatch(Instances train, Instances test) { |
---|
| 236 | // this is expensive but we need to keep the original data intact |
---|
| 237 | this.train = this.deepCopy(train); |
---|
| 238 | this.test = test; // we do not need a copy here because we do not drop attributes before |
---|
| 239 | // the matching and after the matching we create a new Instances with |
---|
| 240 | // only the matched attributes |
---|
| 241 | |
---|
| 242 | // convert metrics of testdata and traindata to later use in similarity tests |
---|
| 243 | this.train_values = new ArrayList<double[]>(); |
---|
| 244 | for (int i = 0; i < this.train.numAttributes(); i++) { |
---|
| 245 | if (this.train.classIndex() != i) { |
---|
| 246 | this.train_values.add(this.train.attributeToDoubleArray(i)); |
---|
| 247 | } |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | this.test_values = new ArrayList<double[]>(); |
---|
| 251 | for (int i = 0; i < this.test.numAttributes(); i++) { |
---|
| 252 | if (this.test.classIndex() != i) { |
---|
| 253 | this.test_values.add(this.test.attributeToDoubleArray(i)); |
---|
| 254 | } |
---|
| 255 | } |
---|
| 256 | } |
---|
| 257 | |
---|
| 258 | /** |
---|
| 259 | * We have a lot of matching possibilities. Here we try to determine the best one. |
---|
| 260 | * |
---|
| 261 | * @return double matching score |
---|
| 262 | */ |
---|
| 263 | public double getScore() { |
---|
| 264 | int as = this.attributes.size(); // # of attributes that were matched |
---|
| 265 | |
---|
| 266 | // we use thresholding ranking approach for numInstances to influence the matching score |
---|
| 267 | int instances = this.train.numInstances(); |
---|
| 268 | int inst_rank = 0; |
---|
| 269 | if (instances > 100) { |
---|
| 270 | inst_rank = 1; |
---|
| 271 | } |
---|
| 272 | if (instances > 500) { |
---|
[137] | 273 | inst_rank = 2; |
---|
| 274 | } |
---|
[140] | 275 | |
---|
[141] | 276 | return this.p_sum + as + inst_rank; |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | public HashMap<Integer, Integer> getAttributes() { |
---|
| 280 | return this.attributes; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | public int getNumInstances() { |
---|
| 284 | return this.train_values.get(0).length; |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | /** |
---|
| 288 | * The test instance must be of the same dataset as the train data, otherwise WekaEvaluation |
---|
| 289 | * will die. This means we have to force the dataset of this.train (after matching) and only |
---|
| 290 | * set the values for the attributes we matched but with the index of the traindata |
---|
| 291 | * attributes we matched. |
---|
| 292 | * |
---|
| 293 | * @param test |
---|
| 294 | * @return |
---|
| 295 | */ |
---|
| 296 | public Instance getMatchedTestInstance(Instance test) { |
---|
| 297 | Instance ni = new DenseInstance(this.attributes.size() + 1); |
---|
| 298 | |
---|
[140] | 299 | Instances inst = this.getMatchedTrain(); |
---|
[141] | 300 | |
---|
[140] | 301 | ni.setDataset(inst); |
---|
[141] | 302 | |
---|
[140] | 303 | // assign only the matched attributes to new indexes |
---|
| 304 | double val; |
---|
| 305 | int k = 0; |
---|
[141] | 306 | for (Map.Entry<Integer, Integer> attmatch : this.attributes.entrySet()) { |
---|
[140] | 307 | // get value from matched attribute |
---|
| 308 | val = test.value(attmatch.getValue()); |
---|
[141] | 309 | |
---|
[140] | 310 | // set it to new index, the order of the attributes is the same |
---|
| 311 | ni.setValue(k, val); |
---|
| 312 | k++; |
---|
| 313 | } |
---|
| 314 | ni.setClassValue(test.value(test.classAttribute())); |
---|
[138] | 315 | |
---|
[140] | 316 | return ni; |
---|
[141] | 317 | } |
---|
[137] | 318 | |
---|
[138] | 319 | /** |
---|
| 320 | * returns a new instances array with the metric matched training data |
---|
| 321 | * |
---|
| 322 | * @return instances |
---|
| 323 | */ |
---|
[141] | 324 | public Instances getMatchedTrain() { |
---|
| 325 | return this.getMatchedInstances("train", this.train); |
---|
| 326 | } |
---|
| 327 | |
---|
[138] | 328 | /** |
---|
[141] | 329 | * returns a new instances array with the metric matched test data |
---|
| 330 | * |
---|
| 331 | * @return instances |
---|
| 332 | */ |
---|
| 333 | public Instances getMatchedTest() { |
---|
| 334 | return this.getMatchedInstances("test", this.test); |
---|
| 335 | } |
---|
| 336 | |
---|
| 337 | /** |
---|
| 338 | * We could drop unmatched attributes from our instances datasets. Alas, that would not be |
---|
| 339 | * nice for the following postprocessing jobs and would not work at all for evaluation. We |
---|
| 340 | * keep this as a warning for future generations. |
---|
| 341 | * |
---|
| 342 | * @param name |
---|
| 343 | * @param data |
---|
| 344 | */ |
---|
| 345 | @SuppressWarnings("unused") |
---|
[138] | 346 | private void dropUnmatched(String name, Instances data) { |
---|
[141] | 347 | for (int i = 0; i < data.numAttributes(); i++) { |
---|
| 348 | if (data.classIndex() == i) { |
---|
| 349 | continue; |
---|
| 350 | } |
---|
[138] | 351 | |
---|
[141] | 352 | if (name.equals("train") && !this.attributes.containsKey(i)) { |
---|
| 353 | data.deleteAttributeAt(i); |
---|
| 354 | } |
---|
| 355 | |
---|
| 356 | if (name.equals("test") && !this.attributes.containsValue(i)) { |
---|
| 357 | data.deleteAttributeAt(i); |
---|
| 358 | } |
---|
| 359 | } |
---|
| 360 | } |
---|
| 361 | |
---|
[138] | 362 | /** |
---|
[141] | 363 | * Deep Copy (well, reasonably deep, not sure about header information of attributes) Weka |
---|
| 364 | * Instances. |
---|
[139] | 365 | * |
---|
[141] | 366 | * @param data |
---|
| 367 | * Instances |
---|
[139] | 368 | * @return copy of Instances passed |
---|
| 369 | */ |
---|
[141] | 370 | private Instances deepCopy(Instances data) { |
---|
| 371 | Instances newInst = new Instances(data); |
---|
| 372 | |
---|
| 373 | newInst.clear(); |
---|
| 374 | |
---|
| 375 | for (int i = 0; i < data.size(); i++) { |
---|
[139] | 376 | Instance ni = new DenseInstance(data.numAttributes()); |
---|
[141] | 377 | for (int j = 0; j < data.numAttributes(); j++) { |
---|
[139] | 378 | ni.setValue(newInst.attribute(j), data.instance(i).value(data.attribute(j))); |
---|
| 379 | } |
---|
| 380 | newInst.add(ni); |
---|
| 381 | } |
---|
[141] | 382 | |
---|
[139] | 383 | return newInst; |
---|
[141] | 384 | } |
---|
[139] | 385 | |
---|
| 386 | /** |
---|
[141] | 387 | * Returns a deep copy of passed Instances data for Train or Test data. It only keeps |
---|
| 388 | * attributes that have been matched. |
---|
[138] | 389 | * |
---|
| 390 | * @param name |
---|
| 391 | * @param data |
---|
| 392 | * @return matched Instances |
---|
| 393 | */ |
---|
[141] | 394 | private Instances getMatchedInstances(String name, Instances data) { |
---|
| 395 | ArrayList<Attribute> attrs = new ArrayList<Attribute>(); |
---|
| 396 | |
---|
| 397 | // bug attr is a string, really! |
---|
| 398 | ArrayList<String> bug = new ArrayList<String>(); |
---|
[138] | 399 | bug.add("0"); |
---|
| 400 | bug.add("1"); |
---|
[141] | 401 | |
---|
[138] | 402 | // add our matched attributes and last the bug |
---|
[141] | 403 | for (Map.Entry<Integer, Integer> attmatch : this.attributes.entrySet()) { |
---|
| 404 | attrs.add(new Attribute(String.valueOf(attmatch.getValue()))); |
---|
| 405 | } |
---|
| 406 | attrs.add(new Attribute("bug", bug)); |
---|
| 407 | |
---|
| 408 | // create new instances object of the same size (at least for instances) |
---|
| 409 | Instances newInst = new Instances(name, attrs, data.size()); |
---|
| 410 | |
---|
| 411 | // set last as class |
---|
| 412 | newInst.setClassIndex(newInst.numAttributes() - 1); |
---|
| 413 | |
---|
| 414 | // copy data for matched attributes, this depends if we return train or test data |
---|
| 415 | for (int i = 0; i < data.size(); i++) { |
---|
| 416 | Instance ni = new DenseInstance(this.attributes.size() + 1); |
---|
| 417 | |
---|
[138] | 418 | int j = 0; // new indices! |
---|
[141] | 419 | for (Map.Entry<Integer, Integer> attmatch : this.attributes.entrySet()) { |
---|
| 420 | |
---|
[138] | 421 | // test attribute match |
---|
| 422 | int value = attmatch.getValue(); |
---|
[141] | 423 | |
---|
[138] | 424 | // train attribute match |
---|
[141] | 425 | if (name.equals("train")) { |
---|
[138] | 426 | value = attmatch.getKey(); |
---|
| 427 | } |
---|
[141] | 428 | |
---|
[138] | 429 | ni.setValue(newInst.attribute(j), data.instance(i).value(value)); |
---|
| 430 | j++; |
---|
| 431 | } |
---|
[141] | 432 | ni.setValue(ni.numAttributes() - 1, data.instance(i).value(data.classAttribute())); |
---|
[138] | 433 | newInst.add(ni); |
---|
| 434 | } |
---|
| 435 | |
---|
| 436 | return newInst; |
---|
[141] | 437 | } |
---|
[48] | 438 | |
---|
[141] | 439 | /** |
---|
| 440 | * performs the attribute selection we perform attribute significance tests and drop |
---|
| 441 | * attributes |
---|
| 442 | * |
---|
| 443 | * attribute selection is only performed on the source dataset we retain the top 15% |
---|
| 444 | * attributes (if 15% is a float we just use the integer part) |
---|
| 445 | */ |
---|
| 446 | public void attributeSelection() throws Exception { |
---|
[47] | 447 | |
---|
[141] | 448 | // it is a wrapper, we may decide to implement ChiSquare or other means of selecting |
---|
| 449 | // attributes |
---|
| 450 | this.attributeSelectionBySignificance(this.train); |
---|
| 451 | } |
---|
| 452 | |
---|
| 453 | private void attributeSelectionBySignificance(Instances which) throws Exception { |
---|
| 454 | // Uses: |
---|
| 455 | // http://weka.sourceforge.net/doc.packages/probabilisticSignificanceAE/weka/attributeSelection/SignificanceAttributeEval.html |
---|
| 456 | SignificanceAttributeEval et = new SignificanceAttributeEval(); |
---|
| 457 | et.buildEvaluator(which); |
---|
| 458 | |
---|
| 459 | // evaluate all training attributes |
---|
| 460 | HashMap<String, Double> saeval = new HashMap<String, Double>(); |
---|
| 461 | for (int i = 0; i < which.numAttributes(); i++) { |
---|
| 462 | if (which.classIndex() != i) { |
---|
| 463 | saeval.put(which.attribute(i).name(), et.evaluateAttribute(i)); |
---|
| 464 | } |
---|
| 465 | } |
---|
| 466 | |
---|
| 467 | // sort by significance |
---|
| 468 | HashMap<String, Double> sorted = (HashMap<String, Double>) sortByValues(saeval); |
---|
| 469 | |
---|
| 470 | // Keep the best 15% |
---|
| 471 | double last = ((double) saeval.size() / 100.0) * 15.0; |
---|
| 472 | int drop_first = saeval.size() - (int) last; |
---|
| 473 | |
---|
| 474 | // drop attributes above last |
---|
| 475 | Iterator<Entry<String, Double>> it = sorted.entrySet().iterator(); |
---|
| 476 | while (drop_first > 0) { |
---|
| 477 | Map.Entry<String, Double> pair = (Map.Entry<String, Double>) it.next(); |
---|
| 478 | if (which.attribute((String) pair.getKey()).index() != which.classIndex()) { |
---|
| 479 | which.deleteAttributeAt(which.attribute((String) pair.getKey()).index()); |
---|
| 480 | } |
---|
| 481 | drop_first -= 1; |
---|
| 482 | } |
---|
| 483 | } |
---|
| 484 | |
---|
[138] | 485 | /** |
---|
[141] | 486 | * Helper method to sort a hashmap by its values. |
---|
| 487 | * |
---|
| 488 | * @param map |
---|
| 489 | * @return sorted map |
---|
| 490 | */ |
---|
| 491 | private HashMap<String, Double> sortByValues(HashMap<String, Double> map) { |
---|
| 492 | List<Map.Entry<String, Double>> list = |
---|
| 493 | new LinkedList<Map.Entry<String, Double>>(map.entrySet()); |
---|
| 494 | |
---|
| 495 | Collections.sort(list, new Comparator<Map.Entry<String, Double>>() { |
---|
| 496 | public int compare(Map.Entry<String, Double> o1, Map.Entry<String, Double> o2) { |
---|
| 497 | return (o1.getValue()).compareTo(o2.getValue()); |
---|
| 498 | } |
---|
| 499 | }); |
---|
| 500 | |
---|
| 501 | HashMap<String, Double> sortedHashMap = new LinkedHashMap<String, Double>(); |
---|
| 502 | for (Map.Entry<String, Double> item : list) { |
---|
| 503 | sortedHashMap.put(item.getKey(), item.getValue()); |
---|
| 504 | } |
---|
| 505 | return sortedHashMap; |
---|
| 506 | } |
---|
| 507 | |
---|
| 508 | /** |
---|
[138] | 509 | * Executes the similarity matching between train and test data. |
---|
| 510 | * |
---|
[141] | 511 | * After this function is finished we have this.attributes with the correct matching between |
---|
| 512 | * train and test data attributes. |
---|
[138] | 513 | * |
---|
| 514 | * @param type |
---|
| 515 | * @param cutoff |
---|
| 516 | */ |
---|
[141] | 517 | public void matchAttributes(String type, double cutoff) { |
---|
| 518 | |
---|
| 519 | MWBMatchingAlgorithm mwbm = |
---|
| 520 | new MWBMatchingAlgorithm(this.train.numAttributes(), this.test.numAttributes()); |
---|
| 521 | |
---|
| 522 | if (type.equals("spearman")) { |
---|
| 523 | this.spearmansRankCorrelation(cutoff, mwbm); |
---|
| 524 | } |
---|
| 525 | else if (type.equals("ks")) { |
---|
| 526 | this.kolmogorovSmirnovTest(cutoff, mwbm); |
---|
| 527 | } |
---|
| 528 | else if (type.equals("percentile")) { |
---|
| 529 | this.percentiles(cutoff, mwbm); |
---|
| 530 | } |
---|
| 531 | else { |
---|
| 532 | throw new RuntimeException("unknown matching method"); |
---|
| 533 | } |
---|
| 534 | |
---|
| 535 | // resulting maximal match gets assigned to this.attributes |
---|
[137] | 536 | int[] result = mwbm.getMatching(); |
---|
[141] | 537 | for (int i = 0; i < result.length; i++) { |
---|
| 538 | |
---|
[137] | 539 | // -1 means that it is not in the set of maximal matching |
---|
[141] | 540 | if (i != -1 && result[i] != -1) { |
---|
| 541 | this.p_sum += mwbm.weights[i][result[i]]; // we add the weight of the returned |
---|
| 542 | // matching for scoring the complete |
---|
| 543 | // match later |
---|
[137] | 544 | this.attributes.put(i, result[i]); |
---|
| 545 | } |
---|
| 546 | } |
---|
| 547 | } |
---|
[141] | 548 | |
---|
| 549 | /** |
---|
| 550 | * Calculates the Percentiles of the source and target metrics. |
---|
| 551 | * |
---|
| 552 | * @param cutoff |
---|
| 553 | */ |
---|
| 554 | public void percentiles(double cutoff, MWBMatchingAlgorithm mwbm) { |
---|
| 555 | for (int i = 0; i < this.train.numAttributes(); i++) { |
---|
| 556 | for (int j = 0; j < this.test.numAttributes(); j++) { |
---|
| 557 | // negative infinity counts as not present, we do this so we don't have to map |
---|
| 558 | // between attribute indexes in weka |
---|
[137] | 559 | // and the result of the mwbm computation |
---|
| 560 | mwbm.setWeight(i, j, Double.NEGATIVE_INFINITY); |
---|
[141] | 561 | |
---|
| 562 | // class attributes are not relevant |
---|
[137] | 563 | if (this.test.classIndex() == j) { |
---|
[49] | 564 | continue; |
---|
| 565 | } |
---|
[137] | 566 | if (this.train.classIndex() == i) { |
---|
[49] | 567 | continue; |
---|
| 568 | } |
---|
[137] | 569 | |
---|
| 570 | // get percentiles |
---|
| 571 | double train[] = this.train_values.get(i); |
---|
| 572 | double test[] = this.test_values.get(j); |
---|
[141] | 573 | |
---|
[137] | 574 | Arrays.sort(train); |
---|
| 575 | Arrays.sort(test); |
---|
[141] | 576 | |
---|
[137] | 577 | // percentiles |
---|
| 578 | double train_p; |
---|
| 579 | double test_p; |
---|
| 580 | double score = 0.0; |
---|
[141] | 581 | for (int p = 1; p <= 9; p++) { |
---|
| 582 | train_p = train[(int) Math.ceil(train.length * (p / 100))]; |
---|
| 583 | test_p = test[(int) Math.ceil(test.length * (p / 100))]; |
---|
| 584 | |
---|
| 585 | if (train_p > test_p) { |
---|
[137] | 586 | score += test_p / train_p; |
---|
[141] | 587 | } |
---|
| 588 | else { |
---|
[137] | 589 | score += train_p / test_p; |
---|
[49] | 590 | } |
---|
| 591 | } |
---|
[141] | 592 | |
---|
| 593 | if (score > cutoff) { |
---|
[137] | 594 | mwbm.setWeight(i, j, score); |
---|
| 595 | } |
---|
[49] | 596 | } |
---|
| 597 | } |
---|
[141] | 598 | } |
---|
[137] | 599 | |
---|
[141] | 600 | /** |
---|
| 601 | * Calculate Spearmans rank correlation coefficient as matching score. The number of |
---|
| 602 | * instances for the source and target needs to be the same so we randomly sample from the |
---|
| 603 | * bigger one. |
---|
| 604 | * |
---|
| 605 | * @param cutoff |
---|
| 606 | * @param mwbmatching |
---|
| 607 | */ |
---|
| 608 | public void spearmansRankCorrelation(double cutoff, MWBMatchingAlgorithm mwbm) { |
---|
| 609 | double p = 0; |
---|
[44] | 610 | |
---|
[141] | 611 | SpearmansCorrelation t = new SpearmansCorrelation(); |
---|
| 612 | |
---|
| 613 | // size has to be the same so we randomly sample the number of the smaller sample from |
---|
| 614 | // the big sample |
---|
| 615 | if (this.train.size() > this.test.size()) { |
---|
| 616 | this.sample(this.train, this.test, this.train_values); |
---|
| 617 | } |
---|
| 618 | else if (this.test.size() > this.train.size()) { |
---|
| 619 | this.sample(this.test, this.train, this.test_values); |
---|
| 620 | } |
---|
| 621 | |
---|
[137] | 622 | // try out possible attribute combinations |
---|
[141] | 623 | for (int i = 0; i < this.train.numAttributes(); i++) { |
---|
| 624 | for (int j = 0; j < this.test.numAttributes(); j++) { |
---|
| 625 | // negative infinity counts as not present, we do this so we don't have to map |
---|
| 626 | // between attribute indexs in weka |
---|
[137] | 627 | // and the result of the mwbm computation |
---|
| 628 | mwbm.setWeight(i, j, Double.NEGATIVE_INFINITY); |
---|
[141] | 629 | |
---|
| 630 | // class attributes are not relevant |
---|
[137] | 631 | if (this.test.classIndex() == j) { |
---|
[44] | 632 | continue; |
---|
| 633 | } |
---|
[137] | 634 | if (this.train.classIndex() == i) { |
---|
[44] | 635 | continue; |
---|
| 636 | } |
---|
[141] | 637 | |
---|
| 638 | p = t.correlation(this.train_values.get(i), this.test_values.get(j)); |
---|
| 639 | if (p > cutoff) { |
---|
[137] | 640 | mwbm.setWeight(i, j, p); |
---|
[141] | 641 | } |
---|
| 642 | } |
---|
| 643 | } |
---|
[44] | 644 | } |
---|
| 645 | |
---|
[141] | 646 | /** |
---|
| 647 | * Helper method to sample instances for the Spearman rank correlation coefficient method. |
---|
| 648 | * |
---|
| 649 | * @param bigger |
---|
| 650 | * @param smaller |
---|
| 651 | * @param values |
---|
| 652 | */ |
---|
[139] | 653 | private void sample(Instances bigger, Instances smaller, ArrayList<double[]> values) { |
---|
[44] | 654 | // we want to at keep the indices we select the same |
---|
| 655 | int indices_to_draw = smaller.size(); |
---|
| 656 | ArrayList<Integer> indices = new ArrayList<Integer>(); |
---|
| 657 | Random rand = new Random(); |
---|
[47] | 658 | while (indices_to_draw > 0) { |
---|
[141] | 659 | |
---|
| 660 | int index = rand.nextInt(bigger.size() - 1); |
---|
| 661 | |
---|
[47] | 662 | if (!indices.contains(index)) { |
---|
[44] | 663 | indices.add(index); |
---|
| 664 | indices_to_draw--; |
---|
| 665 | } |
---|
| 666 | } |
---|
[141] | 667 | |
---|
[44] | 668 | // now reduce our values to the indices we choose above for every attribute |
---|
[141] | 669 | for (int att = 0; att < bigger.numAttributes() - 1; att++) { |
---|
| 670 | |
---|
[44] | 671 | // get double for the att |
---|
| 672 | double[] vals = values.get(att); |
---|
| 673 | double[] new_vals = new double[indices.size()]; |
---|
[141] | 674 | |
---|
[44] | 675 | int i = 0; |
---|
[47] | 676 | for (Iterator<Integer> it = indices.iterator(); it.hasNext();) { |
---|
[44] | 677 | new_vals[i] = vals[it.next()]; |
---|
| 678 | i++; |
---|
| 679 | } |
---|
[141] | 680 | |
---|
[44] | 681 | values.set(att, new_vals); |
---|
| 682 | } |
---|
[141] | 683 | } |
---|
| 684 | |
---|
| 685 | /** |
---|
| 686 | * We run the kolmogorov-smirnov test on the data from our test an traindata if the p value |
---|
| 687 | * is above the cutoff we include it in the results p value tends to be 0 when the |
---|
| 688 | * distributions of the data are significantly different but we want them to be the same |
---|
| 689 | * |
---|
| 690 | * @param cutoff |
---|
| 691 | * @return p-val |
---|
| 692 | */ |
---|
| 693 | public void kolmogorovSmirnovTest(double cutoff, MWBMatchingAlgorithm mwbm) { |
---|
| 694 | double p = 0; |
---|
| 695 | |
---|
| 696 | KolmogorovSmirnovTest t = new KolmogorovSmirnovTest(); |
---|
| 697 | for (int i = 0; i < this.train.numAttributes(); i++) { |
---|
| 698 | for (int j = 0; j < this.test.numAttributes(); j++) { |
---|
| 699 | // negative infinity counts as not present, we do this so we don't have to map |
---|
| 700 | // between attribute indexs in weka |
---|
[137] | 701 | // and the result of the mwbm computation |
---|
| 702 | mwbm.setWeight(i, j, Double.NEGATIVE_INFINITY); |
---|
[141] | 703 | |
---|
| 704 | // class attributes are not relevant |
---|
[137] | 705 | if (this.test.classIndex() == j) { |
---|
[44] | 706 | continue; |
---|
| 707 | } |
---|
[137] | 708 | if (this.train.classIndex() == i) { |
---|
[44] | 709 | continue; |
---|
| 710 | } |
---|
[138] | 711 | |
---|
[141] | 712 | // this may invoke exactP on small sample sizes which will not terminate in all |
---|
| 713 | // cases |
---|
| 714 | // p = t.kolmogorovSmirnovTest(this.train_values.get(i), |
---|
| 715 | // this.test_values.get(j), false); |
---|
| 716 | |
---|
[138] | 717 | // this uses approximateP everytime |
---|
[141] | 718 | p = t.approximateP( |
---|
| 719 | t.kolmogorovSmirnovStatistic(this.train_values.get(i), |
---|
| 720 | this.test_values.get(j)), |
---|
| 721 | this.train_values.get(i).length, |
---|
| 722 | this.test_values.get(j).length); |
---|
| 723 | if (p > cutoff) { |
---|
[137] | 724 | mwbm.setWeight(i, j, p); |
---|
[141] | 725 | } |
---|
| 726 | } |
---|
| 727 | } |
---|
| 728 | } |
---|
[137] | 729 | } |
---|
[44] | 730 | |
---|
[137] | 731 | /* |
---|
[141] | 732 | * Copyright (c) 2007, Massachusetts Institute of Technology Copyright (c) 2005-2006, Regents of |
---|
| 733 | * the University of California All rights reserved. |
---|
[137] | 734 | * |
---|
[141] | 735 | * Redistribution and use in source and binary forms, with or without modification, are |
---|
| 736 | * permitted provided that the following conditions are met: |
---|
[137] | 737 | * |
---|
[141] | 738 | * * Redistributions of source code must retain the above copyright notice, this list of |
---|
| 739 | * conditions and the following disclaimer. |
---|
[137] | 740 | * |
---|
[141] | 741 | * * Redistributions in binary form must reproduce the above copyright notice, this list of |
---|
| 742 | * conditions and the following disclaimer in the documentation and/or other materials provided |
---|
| 743 | * with the distribution. |
---|
[137] | 744 | * |
---|
[141] | 745 | * * Neither the name of the University of California, Berkeley nor the names of its |
---|
| 746 | * contributors may be used to endorse or promote products derived from this software without |
---|
| 747 | * specific prior written permission. |
---|
[137] | 748 | * |
---|
[141] | 749 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS |
---|
| 750 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
---|
| 751 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
| 752 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
---|
| 753 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE |
---|
| 754 | * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
---|
| 755 | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
---|
| 756 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
---|
[137] | 757 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 758 | */ |
---|
| 759 | |
---|
| 760 | /** |
---|
[141] | 761 | * An engine for finding the maximum-weight matching in a complete bipartite graph. Suppose we |
---|
| 762 | * have two sets <i>S</i> and <i>T</i>, both of size <i>n</i>. For each <i>i</i> in <i>S</i> and |
---|
| 763 | * <i>j</i> in <i>T</i>, we have a weight <i>w<sub>ij</sub></i>. A perfect matching <i>X</i> is |
---|
| 764 | * a subset of <i>S</i> x <i>T</i> such that each <i>i</i> in <i>S</i> occurs in exactly one |
---|
| 765 | * element of <i>X</i>, and each <i>j</i> in <i>T</i> occurs in exactly one element of <i>X</i>. |
---|
| 766 | * Thus, <i>X</i> can be thought of as a one-to-one function from <i>S</i> to <i>T</i>. The |
---|
| 767 | * weight of <i>X</i> is the sum, over (<i>i</i>, <i>j</i>) in <i>X</i>, of <i>w |
---|
| 768 | * <sub>ij</sub></i>. A BipartiteMatcher takes the number <i>n</i> and the weights <i>w |
---|
| 769 | * <sub>ij</sub></i>, and finds a perfect matching of maximum weight. |
---|
[137] | 770 | * |
---|
[141] | 771 | * It uses the Hungarian algorithm of Kuhn (1955), as improved and presented by E. L. Lawler in |
---|
| 772 | * his book <cite>Combinatorial Optimization: Networks and Matroids</cite> (Holt, Rinehart and |
---|
| 773 | * Winston, 1976, p. 205-206). The running time is O(<i>n</i><sup>3</sup>). The weights can be |
---|
| 774 | * any finite real numbers; Lawler's algorithm assumes positive weights, so if necessary we add |
---|
| 775 | * a constant <i>c</i> to all the weights before running the algorithm. This increases the |
---|
| 776 | * weight of every perfect matching by <i>nc</i>, which doesn't change which perfect matchings |
---|
[137] | 777 | * have maximum weight. |
---|
| 778 | * |
---|
[141] | 779 | * If a weight is set to Double.NEGATIVE_INFINITY, then the algorithm will behave as if that |
---|
| 780 | * edge were not in the graph. If all the edges incident on a given node have weight |
---|
| 781 | * Double.NEGATIVE_INFINITY, then the final result will not be a perfect matching, and an |
---|
| 782 | * exception will be thrown. |
---|
[137] | 783 | */ |
---|
[141] | 784 | class MWBMatchingAlgorithm { |
---|
[137] | 785 | /** |
---|
[141] | 786 | * Creates a BipartiteMatcher without specifying the graph size. Calling any other method |
---|
| 787 | * before calling reset will yield an IllegalStateException. |
---|
[137] | 788 | */ |
---|
[141] | 789 | |
---|
| 790 | /** |
---|
| 791 | * Tolerance for comparisons to zero, to account for floating-point imprecision. We consider |
---|
| 792 | * a positive number to be essentially zero if it is strictly less than TOL. |
---|
[137] | 793 | */ |
---|
| 794 | private static final double TOL = 1e-10; |
---|
[141] | 795 | // Number of left side nodes |
---|
[137] | 796 | int n; |
---|
| 797 | |
---|
[141] | 798 | // Number of right side nodes |
---|
[137] | 799 | int m; |
---|
| 800 | |
---|
| 801 | double[][] weights; |
---|
| 802 | double minWeight; |
---|
| 803 | double maxWeight; |
---|
| 804 | |
---|
[141] | 805 | // If (i, j) is in the mapping, then sMatches[i] = j and tMatches[j] = i. |
---|
| 806 | // If i is unmatched, then sMatches[i] = -1 (and likewise for tMatches). |
---|
[137] | 807 | int[] sMatches; |
---|
| 808 | int[] tMatches; |
---|
| 809 | |
---|
| 810 | static final int NO_LABEL = -1; |
---|
| 811 | static final int EMPTY_LABEL = -2; |
---|
| 812 | |
---|
| 813 | int[] sLabels; |
---|
| 814 | int[] tLabels; |
---|
| 815 | |
---|
| 816 | double[] u; |
---|
| 817 | double[] v; |
---|
[141] | 818 | |
---|
[137] | 819 | double[] pi; |
---|
| 820 | |
---|
| 821 | List<Integer> eligibleS = new ArrayList<Integer>(); |
---|
[141] | 822 | List<Integer> eligibleT = new ArrayList<Integer>(); |
---|
| 823 | |
---|
[137] | 824 | public MWBMatchingAlgorithm() { |
---|
[141] | 825 | n = -1; |
---|
| 826 | m = -1; |
---|
[137] | 827 | } |
---|
| 828 | |
---|
| 829 | /** |
---|
[141] | 830 | * Creates a BipartiteMatcher and prepares it to run on an n x m graph. All the weights are |
---|
| 831 | * initially set to 1. |
---|
[137] | 832 | */ |
---|
| 833 | public MWBMatchingAlgorithm(int n, int m) { |
---|
[141] | 834 | reset(n, m); |
---|
[137] | 835 | } |
---|
| 836 | |
---|
| 837 | /** |
---|
[141] | 838 | * Resets the BipartiteMatcher to run on an n x m graph. The weights are all reset to 1. |
---|
[137] | 839 | */ |
---|
| 840 | private void reset(int n, int m) { |
---|
| 841 | if (n < 0 || m < 0) { |
---|
| 842 | throw new IllegalArgumentException("Negative num nodes: " + n + " or " + m); |
---|
| 843 | } |
---|
| 844 | this.n = n; |
---|
| 845 | this.m = m; |
---|
| 846 | |
---|
| 847 | weights = new double[n][m]; |
---|
| 848 | for (int i = 0; i < n; i++) { |
---|
| 849 | for (int j = 0; j < m; j++) { |
---|
[141] | 850 | weights[i][j] = 1; |
---|
[137] | 851 | } |
---|
| 852 | } |
---|
| 853 | minWeight = 1; |
---|
| 854 | maxWeight = Double.NEGATIVE_INFINITY; |
---|
| 855 | |
---|
| 856 | sMatches = new int[n]; |
---|
| 857 | tMatches = new int[m]; |
---|
| 858 | sLabels = new int[n]; |
---|
| 859 | tLabels = new int[m]; |
---|
| 860 | u = new double[n]; |
---|
| 861 | v = new double[m]; |
---|
| 862 | pi = new double[m]; |
---|
[141] | 863 | |
---|
[137] | 864 | } |
---|
[141] | 865 | |
---|
[137] | 866 | /** |
---|
[141] | 867 | * Sets the weight w<sub>ij</sub> to the given value w. |
---|
[137] | 868 | * |
---|
[141] | 869 | * @throws IllegalArgumentException |
---|
| 870 | * if i or j is outside the range [0, n). |
---|
[137] | 871 | */ |
---|
| 872 | public void setWeight(int i, int j, double w) { |
---|
[141] | 873 | if (n == -1 || m == -1) { |
---|
| 874 | throw new IllegalStateException("Graph size not specified."); |
---|
| 875 | } |
---|
| 876 | if ((i < 0) || (i >= n)) { |
---|
| 877 | throw new IllegalArgumentException("i-value out of range: " + i); |
---|
| 878 | } |
---|
| 879 | if ((j < 0) || (j >= m)) { |
---|
| 880 | throw new IllegalArgumentException("j-value out of range: " + j); |
---|
| 881 | } |
---|
| 882 | if (Double.isNaN(w)) { |
---|
| 883 | throw new IllegalArgumentException("Illegal weight: " + w); |
---|
| 884 | } |
---|
[137] | 885 | |
---|
[141] | 886 | weights[i][j] = w; |
---|
| 887 | if ((w > Double.NEGATIVE_INFINITY) && (w < minWeight)) { |
---|
| 888 | minWeight = w; |
---|
| 889 | } |
---|
| 890 | if (w > maxWeight) { |
---|
| 891 | maxWeight = w; |
---|
| 892 | } |
---|
[137] | 893 | } |
---|
| 894 | |
---|
| 895 | /** |
---|
[141] | 896 | * Returns a maximum-weight perfect matching relative to the weights specified with |
---|
| 897 | * setWeight. The matching is represented as an array arr of length n, where arr[i] = j if |
---|
| 898 | * (i,j) is in the matching. |
---|
[137] | 899 | */ |
---|
| 900 | public int[] getMatching() { |
---|
[141] | 901 | if (n == -1 || m == -1) { |
---|
| 902 | throw new IllegalStateException("Graph size not specified."); |
---|
| 903 | } |
---|
| 904 | if (n == 0) { |
---|
| 905 | return new int[0]; |
---|
| 906 | } |
---|
| 907 | ensurePositiveWeights(); |
---|
[137] | 908 | |
---|
[141] | 909 | // Step 0: Initialization |
---|
| 910 | eligibleS.clear(); |
---|
| 911 | eligibleT.clear(); |
---|
| 912 | for (Integer i = 0; i < n; i++) { |
---|
| 913 | sMatches[i] = -1; |
---|
[137] | 914 | |
---|
[141] | 915 | u[i] = maxWeight; // ambiguous on p. 205 of Lawler, but see p. 202 |
---|
[137] | 916 | |
---|
[141] | 917 | // this is really first run of Step 1.0 |
---|
| 918 | sLabels[i] = EMPTY_LABEL; |
---|
| 919 | eligibleS.add(i); |
---|
| 920 | } |
---|
[137] | 921 | |
---|
[141] | 922 | for (int j = 0; j < m; j++) { |
---|
| 923 | tMatches[j] = -1; |
---|
[137] | 924 | |
---|
[141] | 925 | v[j] = 0; |
---|
| 926 | pi[j] = Double.POSITIVE_INFINITY; |
---|
[137] | 927 | |
---|
[141] | 928 | // this is really first run of Step 1.0 |
---|
[137] | 929 | tLabels[j] = NO_LABEL; |
---|
| 930 | } |
---|
[141] | 931 | |
---|
| 932 | while (true) { |
---|
| 933 | // Augment the matching until we can't augment any more given the |
---|
| 934 | // current settings of the dual variables. |
---|
| 935 | while (true) { |
---|
| 936 | // Steps 1.1-1.4: Find an augmenting path |
---|
| 937 | int lastNode = findAugmentingPath(); |
---|
| 938 | if (lastNode == -1) { |
---|
| 939 | break; // no augmenting path |
---|
| 940 | } |
---|
| 941 | |
---|
| 942 | // Step 2: Augmentation |
---|
| 943 | flipPath(lastNode); |
---|
| 944 | for (int i = 0; i < n; i++) |
---|
| 945 | sLabels[i] = NO_LABEL; |
---|
| 946 | |
---|
| 947 | for (int j = 0; j < m; j++) { |
---|
| 948 | pi[j] = Double.POSITIVE_INFINITY; |
---|
| 949 | tLabels[j] = NO_LABEL; |
---|
| 950 | } |
---|
| 951 | |
---|
| 952 | // This is Step 1.0 |
---|
| 953 | eligibleS.clear(); |
---|
| 954 | for (int i = 0; i < n; i++) { |
---|
| 955 | if (sMatches[i] == -1) { |
---|
| 956 | sLabels[i] = EMPTY_LABEL; |
---|
| 957 | eligibleS.add(new Integer(i)); |
---|
| 958 | } |
---|
| 959 | } |
---|
| 960 | |
---|
| 961 | eligibleT.clear(); |
---|
[137] | 962 | } |
---|
| 963 | |
---|
[141] | 964 | // Step 3: Change the dual variables |
---|
[137] | 965 | |
---|
[141] | 966 | // delta1 = min_i u[i] |
---|
| 967 | double delta1 = Double.POSITIVE_INFINITY; |
---|
| 968 | for (int i = 0; i < n; i++) { |
---|
| 969 | if (u[i] < delta1) { |
---|
| 970 | delta1 = u[i]; |
---|
| 971 | } |
---|
| 972 | } |
---|
[137] | 973 | |
---|
[141] | 974 | // delta2 = min_{j : pi[j] > 0} pi[j] |
---|
| 975 | double delta2 = Double.POSITIVE_INFINITY; |
---|
| 976 | for (int j = 0; j < m; j++) { |
---|
| 977 | if ((pi[j] >= TOL) && (pi[j] < delta2)) { |
---|
| 978 | delta2 = pi[j]; |
---|
| 979 | } |
---|
| 980 | } |
---|
[137] | 981 | |
---|
[141] | 982 | if (delta1 < delta2) { |
---|
| 983 | // In order to make another pi[j] equal 0, we'd need to |
---|
| 984 | // make some u[i] negative. |
---|
| 985 | break; // we have a maximum-weight matching |
---|
| 986 | } |
---|
| 987 | |
---|
| 988 | changeDualVars(delta2); |
---|
[137] | 989 | } |
---|
| 990 | |
---|
[141] | 991 | int[] matching = new int[n]; |
---|
| 992 | for (int i = 0; i < n; i++) { |
---|
| 993 | matching[i] = sMatches[i]; |
---|
[137] | 994 | } |
---|
[141] | 995 | return matching; |
---|
[137] | 996 | } |
---|
| 997 | |
---|
| 998 | /** |
---|
[141] | 999 | * Tries to find an augmenting path containing only edges (i,j) for which u[i] + v[j] = |
---|
| 1000 | * weights[i][j]. If it succeeds, returns the index of the last node in the path. Otherwise, |
---|
| 1001 | * returns -1. In any case, updates the labels and pi values. |
---|
[137] | 1002 | */ |
---|
| 1003 | int findAugmentingPath() { |
---|
[141] | 1004 | while ((!eligibleS.isEmpty()) || (!eligibleT.isEmpty())) { |
---|
| 1005 | if (!eligibleS.isEmpty()) { |
---|
| 1006 | int i = ((Integer) eligibleS.get(eligibleS.size() - 1)).intValue(); |
---|
| 1007 | eligibleS.remove(eligibleS.size() - 1); |
---|
| 1008 | for (int j = 0; j < m; j++) { |
---|
| 1009 | // If pi[j] has already been decreased essentially |
---|
| 1010 | // to zero, then j is already labeled, and we |
---|
| 1011 | // can't decrease pi[j] any more. Omitting the |
---|
| 1012 | // pi[j] >= TOL check could lead us to relabel j |
---|
| 1013 | // unnecessarily, since the diff we compute on the |
---|
| 1014 | // next line may end up being less than pi[j] due |
---|
| 1015 | // to floating point imprecision. |
---|
| 1016 | if ((tMatches[j] != i) && (pi[j] >= TOL)) { |
---|
| 1017 | double diff = u[i] + v[j] - weights[i][j]; |
---|
| 1018 | if (diff < pi[j]) { |
---|
| 1019 | tLabels[j] = i; |
---|
| 1020 | pi[j] = diff; |
---|
| 1021 | if (pi[j] < TOL) { |
---|
| 1022 | eligibleT.add(new Integer(j)); |
---|
| 1023 | } |
---|
| 1024 | } |
---|
| 1025 | } |
---|
[137] | 1026 | } |
---|
| 1027 | } |
---|
[141] | 1028 | else { |
---|
| 1029 | int j = ((Integer) eligibleT.get(eligibleT.size() - 1)).intValue(); |
---|
| 1030 | eligibleT.remove(eligibleT.size() - 1); |
---|
| 1031 | if (tMatches[j] == -1) { |
---|
| 1032 | return j; // we've found an augmenting path |
---|
| 1033 | } |
---|
| 1034 | |
---|
| 1035 | int i = tMatches[j]; |
---|
| 1036 | sLabels[i] = j; |
---|
| 1037 | eligibleS.add(new Integer(i)); // ok to add twice |
---|
[137] | 1038 | } |
---|
| 1039 | } |
---|
| 1040 | |
---|
[141] | 1041 | return -1; |
---|
[137] | 1042 | } |
---|
| 1043 | |
---|
| 1044 | /** |
---|
[141] | 1045 | * Given an augmenting path ending at lastNode, "flips" the path. This means that an edge on |
---|
| 1046 | * the path is in the matching after the flip if and only if it was not in the matching |
---|
| 1047 | * before the flip. An augmenting path connects two unmatched nodes, so the result is still |
---|
| 1048 | * a matching. |
---|
| 1049 | */ |
---|
[137] | 1050 | void flipPath(int lastNode) { |
---|
| 1051 | while (lastNode != EMPTY_LABEL) { |
---|
| 1052 | int parent = tLabels[lastNode]; |
---|
[141] | 1053 | |
---|
| 1054 | // Add (parent, lastNode) to matching. We don't need to |
---|
| 1055 | // explicitly remove any edges from the matching because: |
---|
| 1056 | // * We know at this point that there is no i such that |
---|
| 1057 | // sMatches[i] = lastNode. |
---|
| 1058 | // * Although there might be some j such that tMatches[j] = |
---|
| 1059 | // parent, that j must be sLabels[parent], and will change |
---|
| 1060 | // tMatches[j] in the next time through this loop. |
---|
[137] | 1061 | sMatches[parent] = lastNode; |
---|
| 1062 | tMatches[lastNode] = parent; |
---|
[141] | 1063 | |
---|
[137] | 1064 | lastNode = sLabels[parent]; |
---|
| 1065 | } |
---|
| 1066 | } |
---|
| 1067 | |
---|
| 1068 | void changeDualVars(double delta) { |
---|
| 1069 | for (int i = 0; i < n; i++) { |
---|
| 1070 | if (sLabels[i] != NO_LABEL) { |
---|
[141] | 1071 | u[i] -= delta; |
---|
[137] | 1072 | } |
---|
| 1073 | } |
---|
[141] | 1074 | |
---|
[137] | 1075 | for (int j = 0; j < m; j++) { |
---|
| 1076 | if (pi[j] < TOL) { |
---|
[141] | 1077 | v[j] += delta; |
---|
[137] | 1078 | } |
---|
[141] | 1079 | else if (tLabels[j] != NO_LABEL) { |
---|
| 1080 | pi[j] -= delta; |
---|
| 1081 | if (pi[j] < TOL) { |
---|
| 1082 | eligibleT.add(new Integer(j)); |
---|
| 1083 | } |
---|
[137] | 1084 | } |
---|
| 1085 | } |
---|
| 1086 | } |
---|
| 1087 | |
---|
| 1088 | /** |
---|
[141] | 1089 | * Ensures that all weights are either Double.NEGATIVE_INFINITY, or strictly greater than |
---|
| 1090 | * zero. |
---|
[137] | 1091 | */ |
---|
| 1092 | private void ensurePositiveWeights() { |
---|
| 1093 | // minWeight is the minimum non-infinite weight |
---|
| 1094 | if (minWeight < TOL) { |
---|
| 1095 | for (int i = 0; i < n; i++) { |
---|
[141] | 1096 | for (int j = 0; j < m; j++) { |
---|
| 1097 | weights[i][j] = weights[i][j] - minWeight + 1; |
---|
| 1098 | } |
---|
[137] | 1099 | } |
---|
[141] | 1100 | |
---|
[137] | 1101 | maxWeight = maxWeight - minWeight + 1; |
---|
| 1102 | minWeight = 1; |
---|
| 1103 | } |
---|
| 1104 | } |
---|
| 1105 | |
---|
| 1106 | @SuppressWarnings("unused") |
---|
| 1107 | private void printWeights() { |
---|
| 1108 | for (int i = 0; i < n; i++) { |
---|
| 1109 | for (int j = 0; j < m; j++) { |
---|
[141] | 1110 | System.out.print(weights[i][j] + " "); |
---|
[137] | 1111 | } |
---|
| 1112 | System.out.println(""); |
---|
| 1113 | } |
---|
| 1114 | } |
---|
| 1115 | } |
---|
[44] | 1116 | } |
---|