1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany |
---|
2 | // |
---|
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
---|
4 | // you may not use this file except in compliance with the License. |
---|
5 | // You may obtain a copy of the License at |
---|
6 | // |
---|
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
---|
8 | // |
---|
9 | // Unless required by applicable law or agreed to in writing, software |
---|
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
---|
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
12 | // See the License for the specific language governing permissions and |
---|
13 | // limitations under the License. |
---|
14 | |
---|
15 | package de.ugoe.cs.cpdp.training; |
---|
16 | |
---|
17 | import java.util.LinkedList; |
---|
18 | import java.util.List; |
---|
19 | |
---|
20 | import de.ugoe.cs.cpdp.util.WekaUtils; |
---|
21 | import weka.classifiers.AbstractClassifier; |
---|
22 | import weka.classifiers.Classifier; |
---|
23 | import weka.core.Instance; |
---|
24 | import weka.core.Instances; |
---|
25 | |
---|
26 | /** |
---|
27 | * <p> |
---|
28 | * Implements training following the LASER classification scheme. |
---|
29 | * </p> |
---|
30 | * |
---|
31 | * @author Steffen Herbold |
---|
32 | */ |
---|
33 | public class WekaLASERTraining extends WekaBaseTraining implements ITrainingStrategy { |
---|
34 | |
---|
35 | /** |
---|
36 | * Internal classifier used for LASER. |
---|
37 | */ |
---|
38 | private final LASERClassifier internalClassifier = new LASERClassifier(); |
---|
39 | |
---|
40 | /* |
---|
41 | * (non-Javadoc) |
---|
42 | * |
---|
43 | * @see de.ugoe.cs.cpdp.training.WekaBaseTraining#getClassifier() |
---|
44 | */ |
---|
45 | @Override |
---|
46 | public Classifier getClassifier() { |
---|
47 | return internalClassifier; |
---|
48 | } |
---|
49 | |
---|
50 | /* |
---|
51 | * (non-Javadoc) |
---|
52 | * |
---|
53 | * @see de.ugoe.cs.cpdp.training.ITrainingStrategy#apply(weka.core.Instances) |
---|
54 | */ |
---|
55 | @Override |
---|
56 | public void apply(Instances traindata) { |
---|
57 | try { |
---|
58 | internalClassifier.buildClassifier(traindata); |
---|
59 | } |
---|
60 | catch (Exception e) { |
---|
61 | throw new RuntimeException(e); |
---|
62 | } |
---|
63 | } |
---|
64 | |
---|
65 | /** |
---|
66 | * <p> |
---|
67 | * Internal helper class that defines the laser classifier. |
---|
68 | * </p> |
---|
69 | * |
---|
70 | * @author Steffen Herbold |
---|
71 | */ |
---|
72 | public class LASERClassifier extends AbstractClassifier { |
---|
73 | |
---|
74 | /** |
---|
75 | * Default serial ID. |
---|
76 | */ |
---|
77 | private static final long serialVersionUID = 1L; |
---|
78 | |
---|
79 | /** |
---|
80 | * Internal reference to the classifier. |
---|
81 | */ |
---|
82 | private Classifier laserClassifier = null; |
---|
83 | |
---|
84 | /** |
---|
85 | * Internal storage of the training data required for NN analysis. |
---|
86 | */ |
---|
87 | private Instances traindata = null; |
---|
88 | |
---|
89 | /* |
---|
90 | * (non-Javadoc) |
---|
91 | * |
---|
92 | * @see weka.classifiers.AbstractClassifier#classifyInstance(weka.core.Instance) |
---|
93 | */ |
---|
94 | @Override |
---|
95 | public double classifyInstance(Instance instance) throws Exception { |
---|
96 | List<Integer> closestInstances = new LinkedList<>(); |
---|
97 | double minDistance = Double.MAX_VALUE; |
---|
98 | for (int i = 0; i < traindata.size(); i++) { |
---|
99 | double distance = WekaUtils.hammingDistance(instance, traindata.get(i)); |
---|
100 | if (distance < minDistance) { |
---|
101 | minDistance = distance; |
---|
102 | } |
---|
103 | } |
---|
104 | for (int i = 0; i < traindata.size(); i++) { |
---|
105 | double distance = WekaUtils.hammingDistance(instance, traindata.get(i)); |
---|
106 | if (distance <= minDistance) { |
---|
107 | closestInstances.add(i); |
---|
108 | } |
---|
109 | } |
---|
110 | if (closestInstances.size() == 1) { |
---|
111 | int closestIndex = closestInstances.get(0); |
---|
112 | Instance closestTrainingInstance = traindata.get(closestIndex); |
---|
113 | List<Integer> closestToTrainingInstance = new LinkedList<>(); |
---|
114 | double minTrainingDistance = Double.MAX_VALUE; |
---|
115 | for (int i = 0; i < traindata.size(); i++) { |
---|
116 | if (closestIndex != i) { |
---|
117 | double distance = |
---|
118 | WekaUtils.hammingDistance(closestTrainingInstance, traindata.get(i)); |
---|
119 | if (distance < minTrainingDistance) { |
---|
120 | minTrainingDistance = distance; |
---|
121 | } |
---|
122 | } |
---|
123 | } |
---|
124 | for (int i = 0; i < traindata.size(); i++) { |
---|
125 | if (closestIndex != i) { |
---|
126 | double distance = |
---|
127 | WekaUtils.hammingDistance(closestTrainingInstance, traindata.get(i)); |
---|
128 | if (distance <= minTrainingDistance) { |
---|
129 | closestToTrainingInstance.add(i); |
---|
130 | } |
---|
131 | } |
---|
132 | } |
---|
133 | if (closestToTrainingInstance.size() == 1) { |
---|
134 | return laserClassifier.classifyInstance(instance); |
---|
135 | } |
---|
136 | else { |
---|
137 | double label = Double.NaN; |
---|
138 | boolean allEqual = true; |
---|
139 | for (Integer index : closestToTrainingInstance) { |
---|
140 | if (Double.isNaN(label)) { |
---|
141 | label = traindata.get(index).classValue(); |
---|
142 | } |
---|
143 | else if (label != traindata.get(index).classValue()) { |
---|
144 | allEqual = false; |
---|
145 | break; |
---|
146 | } |
---|
147 | } |
---|
148 | if (allEqual) { |
---|
149 | return label; |
---|
150 | } |
---|
151 | else { |
---|
152 | return laserClassifier.classifyInstance(instance); |
---|
153 | } |
---|
154 | } |
---|
155 | } |
---|
156 | else { |
---|
157 | double label = Double.NaN; |
---|
158 | boolean allEqual = true; |
---|
159 | for (Integer index : closestInstances) { |
---|
160 | if (Double.isNaN(label)) { |
---|
161 | label = traindata.get(index).classValue(); |
---|
162 | } |
---|
163 | else if (label != traindata.get(index).classValue()) { |
---|
164 | allEqual = false; |
---|
165 | break; |
---|
166 | } |
---|
167 | } |
---|
168 | if (allEqual) { |
---|
169 | return label; |
---|
170 | } |
---|
171 | else { |
---|
172 | return laserClassifier.classifyInstance(instance); |
---|
173 | } |
---|
174 | } |
---|
175 | } |
---|
176 | |
---|
177 | /* |
---|
178 | * (non-Javadoc) |
---|
179 | * |
---|
180 | * @see weka.classifiers.Classifier#buildClassifier(weka.core.Instances) |
---|
181 | */ |
---|
182 | @Override |
---|
183 | public void buildClassifier(Instances traindata) throws Exception { |
---|
184 | this.traindata = new Instances(traindata); |
---|
185 | laserClassifier = setupClassifier(); |
---|
186 | laserClassifier.buildClassifier(traindata); |
---|
187 | } |
---|
188 | } |
---|
189 | } |
---|