[86] | 1 | // Copyright 2015 Georg-August-Universität Göttingen, Germany
|
---|
[77] | 2 | //
|
---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License");
|
---|
| 4 | // you may not use this file except in compliance with the License.
|
---|
| 5 | // You may obtain a copy of the License at
|
---|
| 6 | //
|
---|
| 7 | // http://www.apache.org/licenses/LICENSE-2.0
|
---|
| 8 | //
|
---|
| 9 | // Unless required by applicable law or agreed to in writing, software
|
---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS,
|
---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
| 12 | // See the License for the specific language governing permissions and
|
---|
| 13 | // limitations under the License.
|
---|
| 14 |
|
---|
| 15 | package de.ugoe.cs.cpdp.wekaclassifier;
|
---|
| 16 |
|
---|
| 17 | import java.util.ArrayList;
|
---|
| 18 | import java.util.List;
|
---|
| 19 | import java.util.logging.Level;
|
---|
| 20 |
|
---|
| 21 | import org.uma.jmetal.algorithm.Algorithm;
|
---|
| 22 | import org.uma.jmetal.algorithm.multiobjective.nsgaii.NSGAIIBuilder;
|
---|
| 23 | import org.uma.jmetal.operator.CrossoverOperator;
|
---|
| 24 | import org.uma.jmetal.operator.MutationOperator;
|
---|
| 25 | import org.uma.jmetal.operator.SelectionOperator;
|
---|
| 26 | import org.uma.jmetal.operator.impl.crossover.SBXCrossover;
|
---|
| 27 | import org.uma.jmetal.operator.impl.mutation.UniformMutation;
|
---|
| 28 | import org.uma.jmetal.operator.impl.selection.BinaryTournamentSelection;
|
---|
| 29 | import org.uma.jmetal.problem.ConstrainedProblem;
|
---|
| 30 | import org.uma.jmetal.problem.Problem;
|
---|
| 31 | import org.uma.jmetal.problem.impl.AbstractDoubleProblem;
|
---|
| 32 | import org.uma.jmetal.runner.AbstractAlgorithmRunner;
|
---|
| 33 | import org.uma.jmetal.solution.DoubleSolution;
|
---|
| 34 | import org.uma.jmetal.util.AlgorithmRunner;
|
---|
| 35 | import org.uma.jmetal.util.comparator.RankingAndCrowdingDistanceComparator;
|
---|
| 36 | import org.uma.jmetal.util.solutionattribute.impl.NumberOfViolatedConstraints;
|
---|
| 37 | import org.uma.jmetal.util.solutionattribute.impl.OverallConstraintViolation;
|
---|
| 38 |
|
---|
| 39 | import de.ugoe.cs.util.console.Console;
|
---|
| 40 | import weka.classifiers.AbstractClassifier;
|
---|
| 41 | import weka.core.Attribute;
|
---|
| 42 | import weka.core.Instance;
|
---|
| 43 | import weka.core.Instances;
|
---|
| 44 | import weka.core.Utils;
|
---|
| 45 |
|
---|
| 46 | /**
|
---|
| 47 | * <p>
|
---|
| 48 | * Implements MODEP after Canfora et al., 2013. The class learns the family of MODEP classifiers
|
---|
| 49 | * with the NSGAII algorithm. Based on a defined threshold for the desired recall, we then pick the
|
---|
| 50 | * best of the results, i.e., the one that requires the fewest LOC and is still achieves the desired
|
---|
| 51 | * recall.
|
---|
| 52 | * </p>
|
---|
| 53 | * <p>
|
---|
| 54 | * Our implementation currently only allows a threshold for the desired recall, not for the desired
|
---|
| 55 | * number of LOC.
|
---|
| 56 | * </p>
|
---|
| 57 | *
|
---|
| 58 | * @author Steffen Herbold
|
---|
| 59 | */
|
---|
| 60 | public class MODEPClassifier extends AbstractClassifier {
|
---|
| 61 |
|
---|
| 62 | /** Default serial ID */
|
---|
| 63 | private static final long serialVersionUID = 1L;
|
---|
| 64 |
|
---|
| 65 | /**
|
---|
| 66 | * Coefficients of the calculated solution
|
---|
| 67 | */
|
---|
| 68 | double[][] solutionCoefficients = null;
|
---|
| 69 |
|
---|
| 70 | /**
|
---|
| 71 | * Threshold for the desired recall; default 0.7
|
---|
| 72 | */
|
---|
| 73 | double desiredRecall = 0.7;
|
---|
| 74 |
|
---|
| 75 | /*
|
---|
| 76 | * (non-Javadoc)
|
---|
| 77 | *
|
---|
| 78 | * @see weka.classifiers.AbstractClassifier#setOptions(java.lang.String[])
|
---|
| 79 | */
|
---|
| 80 | @Override
|
---|
| 81 | public void setOptions(String[] options) throws Exception {
|
---|
| 82 | String desiredRecallString = Utils.getOption('R', options);
|
---|
| 83 | if (!desiredRecallString.isEmpty()) {
|
---|
| 84 | desiredRecall = Double.parseDouble(desiredRecallString);
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | /*
|
---|
| 89 | * (non-Javadoc)
|
---|
| 90 | *
|
---|
| 91 | * @see weka.classifiers.AbstractClassifier#distributionForInstance(weka.core.Instance)
|
---|
| 92 | */
|
---|
| 93 | @Override
|
---|
| 94 | public double[] distributionForInstance(Instance instance) throws Exception {
|
---|
| 95 | return distributionForInstance(solutionCoefficients, instance);
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | /*
|
---|
| 99 | * (non-Javadoc)
|
---|
| 100 | *
|
---|
| 101 | * @see weka.classifiers.Classifier#buildClassifier(weka.core.Instances)
|
---|
| 102 | */
|
---|
| 103 | @Override
|
---|
| 104 | public void buildClassifier(Instances traindata) throws Exception {
|
---|
| 105 | double desiredInstances =
|
---|
| 106 | desiredRecall * traindata.attributeStats(traindata.classIndex()).nominalCounts[1];
|
---|
| 107 | MyNSGAIIRunner nsgaIIrunner = new MyNSGAIIRunner(traindata, desiredInstances);
|
---|
| 108 | List<DoubleSolution> solutions = nsgaIIrunner.run();
|
---|
| 109 | DoubleSolution bestSolution = null;
|
---|
| 110 | for (DoubleSolution solution : solutions) {
|
---|
| 111 | if (solution.getObjective(0) >= desiredInstances) {
|
---|
| 112 | if (bestSolution == null) {
|
---|
| 113 | bestSolution = solution;
|
---|
| 114 | }
|
---|
| 115 | else {
|
---|
| 116 | if (bestSolution.getObjective(1) < solution.getObjective(1)) {
|
---|
| 117 | bestSolution = solution;
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | if (bestSolution == null) {
|
---|
| 124 | Console.trace(Level.WARNING,
|
---|
| 125 | "no solution with desired recall found, pick best recall instead");
|
---|
| 126 | for (DoubleSolution solution : solutions) {
|
---|
| 127 | if (bestSolution == null) {
|
---|
| 128 | bestSolution = solution;
|
---|
| 129 | }
|
---|
| 130 | if (solution.getObjective(0) > bestSolution.getObjective(0)) {
|
---|
| 131 | bestSolution = solution;
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | solutionCoefficients = solutionToCoefficients(bestSolution);
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | /**
|
---|
| 140 | * <p>
|
---|
| 141 | * Internal helper method to get the distribution for an instance given the coefficients of the
|
---|
| 142 | * logistic regression
|
---|
| 143 | * </p>
|
---|
| 144 | *
|
---|
| 145 | * @param coefficients
|
---|
| 146 | * the coefficients
|
---|
| 147 | * @param instance
|
---|
| 148 | * the instance
|
---|
| 149 | * @return probability for each class
|
---|
| 150 | */
|
---|
| 151 | private static double[] distributionForInstance(double[][] coefficients, Instance instance) {
|
---|
| 152 | int numClasses = instance.classAttribute().numValues();
|
---|
| 153 | double[] results = new double[numClasses];
|
---|
| 154 |
|
---|
| 155 | for (int i = 0; i < numClasses; i++) {
|
---|
| 156 | int k = 0;
|
---|
| 157 | for (int j = 0; j < instance.numAttributes(); j++) {
|
---|
| 158 | if (j != instance.classIndex()) {
|
---|
| 159 | results[i] += coefficients[i][k] * instance.value(j);
|
---|
| 160 | k++;
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 | results[i] = sigmoid(results[i]);
|
---|
| 164 | }
|
---|
| 165 | return results;
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | /**
|
---|
| 169 | * <p>
|
---|
| 170 | * returns the classification of an instance with the logistic regression for the given
|
---|
| 171 | * coefficients
|
---|
| 172 | * </p>
|
---|
| 173 | *
|
---|
| 174 | * @param coefficients
|
---|
| 175 | * the coefficients
|
---|
| 176 | * @param instance
|
---|
| 177 | * the instance
|
---|
| 178 | * @return the binary classification
|
---|
| 179 | */
|
---|
| 180 | private static double logisticRegression(double[][] coefficients, Instance instance) {
|
---|
| 181 | double[] results = distributionForInstance(coefficients, instance);
|
---|
| 182 | double maxResult = Double.MIN_VALUE;
|
---|
| 183 | int maxIndex = 0;
|
---|
| 184 | for (int i = 0; i < results.length; i++) {
|
---|
| 185 | if (maxResult < results[i]) {
|
---|
| 186 | maxResult = results[i];
|
---|
| 187 | maxIndex = i;
|
---|
| 188 | }
|
---|
| 189 | }
|
---|
| 190 | return Double.parseDouble(instance.classAttribute().value(maxIndex));
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | /**
|
---|
| 194 | * <p>
|
---|
| 195 | * Sigmoid function, required for logistic regression
|
---|
| 196 | * </p>
|
---|
| 197 | *
|
---|
| 198 | * @param z
|
---|
| 199 | * value for which the sigmoid is calcualted
|
---|
| 200 | * @return 1/(1+exp(-z))
|
---|
| 201 | */
|
---|
| 202 | private static double sigmoid(double z) {
|
---|
| 203 | return 1.0 / (1.0 + Math.exp(-z));
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | /**
|
---|
| 207 | * <p>
|
---|
| 208 | * Converts a {@link DoubleSolution} into a coefficient matrix
|
---|
| 209 | * </p>
|
---|
| 210 | *
|
---|
| 211 | * @param solution
|
---|
| 212 | * solution the is converted
|
---|
| 213 | * @return coefficient matrix
|
---|
| 214 | */
|
---|
| 215 | public static double[][] solutionToCoefficients(DoubleSolution solution) {
|
---|
| 216 | int numberOfVariables = solution.getNumberOfVariables();
|
---|
| 217 | int numberOfCoefficients = numberOfVariables / 2;
|
---|
| 218 |
|
---|
| 219 | double[][] coefficients = new double[2][numberOfCoefficients];
|
---|
| 220 |
|
---|
| 221 | for (int i = 0; i < numberOfVariables; i++) {
|
---|
| 222 | if (i < numberOfCoefficients) {
|
---|
| 223 | coefficients[0][i] = solution.getVariableValue(i);
|
---|
| 224 | }
|
---|
| 225 | else {
|
---|
| 226 | coefficients[1][i - numberOfCoefficients] = solution.getVariableValue(i);
|
---|
| 227 | }
|
---|
| 228 | }
|
---|
| 229 | return coefficients;
|
---|
| 230 | }
|
---|
| 231 |
|
---|
| 232 | /**
|
---|
| 233 | * <p>
|
---|
| 234 | * Executes the NSGAII algorithm with the MODEP problem.
|
---|
| 235 | * </p>
|
---|
| 236 | *
|
---|
| 237 | * @author Steffen Herbold
|
---|
| 238 | */
|
---|
| 239 | private class MyNSGAIIRunner extends AbstractAlgorithmRunner {
|
---|
| 240 |
|
---|
| 241 | /**
|
---|
| 242 | * configured algorithm to solve the {@link MODEPProblem}.
|
---|
| 243 | */
|
---|
| 244 | final Algorithm<List<DoubleSolution>> algorithm;
|
---|
| 245 |
|
---|
| 246 | /**
|
---|
| 247 | * <p>
|
---|
| 248 | * Constructor. Configures the algorithm object.
|
---|
| 249 | * </p>
|
---|
| 250 | *
|
---|
| 251 | * @param data
|
---|
| 252 | * data for which the MODEP problem is optimized
|
---|
| 253 | * @param minEffectiveness
|
---|
| 254 | * minimal desired effectiveness
|
---|
| 255 | */
|
---|
| 256 | private MyNSGAIIRunner(Instances data, double minEffectiveness) {
|
---|
| 257 | final Problem<DoubleSolution> problem = new MODEPProblem(data, minEffectiveness);
|
---|
| 258 | double crossoverProbability = 0.6;
|
---|
| 259 | double crossoverDistributionIndex = 20.0;
|
---|
| 260 | final CrossoverOperator<DoubleSolution> crossover =
|
---|
| 261 | new SBXCrossover(crossoverProbability, crossoverDistributionIndex);
|
---|
| 262 |
|
---|
| 263 | double mutationProbability = 0.05;
|
---|
| 264 | double mutationPerturbation = 0.0;
|
---|
| 265 | final MutationOperator<DoubleSolution> mutation =
|
---|
| 266 | new UniformMutation(mutationProbability, mutationPerturbation);
|
---|
| 267 | final SelectionOperator<List<DoubleSolution>, DoubleSolution> selection =
|
---|
| 268 | new BinaryTournamentSelection<DoubleSolution>(new RankingAndCrowdingDistanceComparator<DoubleSolution>());
|
---|
| 269 |
|
---|
| 270 | algorithm = new NSGAIIBuilder<DoubleSolution>(problem, crossover, mutation)
|
---|
| 271 | .setSelectionOperator(selection).setMaxIterations(400).setPopulationSize(100)
|
---|
| 272 | .build();
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | /**
|
---|
| 276 | * <p>
|
---|
| 277 | * Executes the NSGAII algorithm.
|
---|
| 278 | * </p>
|
---|
| 279 | *
|
---|
| 280 | * @return solutions of the problem; should be a Pareto front
|
---|
| 281 | */
|
---|
| 282 | public List<DoubleSolution> run() {
|
---|
| 283 | AlgorithmRunner algorithmRunner = new AlgorithmRunner.Executor(algorithm).execute();
|
---|
| 284 | List<DoubleSolution> population = algorithm.getResult();
|
---|
| 285 | Console.traceln(Level.FINEST,
|
---|
| 286 | "genetic algorithm run time: " + algorithmRunner.getComputingTime());
|
---|
| 287 | return population;
|
---|
| 288 | }
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | /**
|
---|
| 292 | * <p>
|
---|
| 293 | * Problem definition of MODEP.
|
---|
| 294 | * </p>
|
---|
| 295 | *
|
---|
| 296 | * @author Steffen Herbold
|
---|
| 297 | */
|
---|
| 298 | private class MODEPProblem extends AbstractDoubleProblem
|
---|
| 299 | implements ConstrainedProblem<DoubleSolution>
|
---|
| 300 | {
|
---|
| 301 | /** Default serial ID */
|
---|
| 302 | private static final long serialVersionUID = 1L;
|
---|
| 303 |
|
---|
| 304 | /**
|
---|
| 305 | * Data for which MODEP is defined
|
---|
| 306 | */
|
---|
| 307 | private final Instances data;
|
---|
| 308 |
|
---|
| 309 | /**
|
---|
| 310 | * Minimal desired effectiveness.
|
---|
| 311 | */
|
---|
| 312 | private final double minEffectiveness;
|
---|
| 313 |
|
---|
| 314 | /**
|
---|
| 315 | * Stores the contraint violations for all current solutions
|
---|
| 316 | */
|
---|
| 317 | public OverallConstraintViolation<DoubleSolution> overallConstraintViolationDegree;
|
---|
| 318 |
|
---|
| 319 | /**
|
---|
| 320 | * Stores the number of violated constraints for all current solutions.
|
---|
| 321 | */
|
---|
| 322 | public NumberOfViolatedConstraints<DoubleSolution> numberOfViolatedConstraints;
|
---|
| 323 |
|
---|
| 324 | /**
|
---|
| 325 | * <p>
|
---|
| 326 | * Constructor. Initializes the MODEP problem.
|
---|
| 327 | * </p>
|
---|
| 328 | *
|
---|
| 329 | * @param data
|
---|
| 330 | * data for which MODEP is defined
|
---|
| 331 | * @param minEffectiveness
|
---|
| 332 | * minimal desired effectiveness
|
---|
| 333 | */
|
---|
| 334 | public MODEPProblem(Instances data, double minEffectiveness) {
|
---|
| 335 | this.data = data;
|
---|
| 336 | this.minEffectiveness = minEffectiveness;
|
---|
| 337 | setNumberOfVariables(2 * (data.numAttributes() - 1));
|
---|
| 338 | setNumberOfObjectives(2);
|
---|
| 339 | setNumberOfConstraints(1);
|
---|
| 340 | setName("MODEPProblem");
|
---|
| 341 |
|
---|
| 342 | List<Double> lowerLimit = new ArrayList<>(getNumberOfVariables());
|
---|
| 343 | List<Double> upperLimit = new ArrayList<>(getNumberOfVariables());
|
---|
| 344 |
|
---|
| 345 | for (int i = 0; i < getNumberOfVariables(); i++) {
|
---|
| 346 | lowerLimit.add(-100.0);
|
---|
| 347 | upperLimit.add(100.0);
|
---|
| 348 | }
|
---|
| 349 |
|
---|
| 350 | setLowerLimit(lowerLimit);
|
---|
| 351 | setUpperLimit(upperLimit);
|
---|
| 352 |
|
---|
| 353 | overallConstraintViolationDegree = new OverallConstraintViolation<>();
|
---|
| 354 | numberOfViolatedConstraints = new NumberOfViolatedConstraints<>();
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | /*
|
---|
| 358 | * (non-Javadoc)
|
---|
| 359 | *
|
---|
| 360 | * @see org.uma.jmetal.problem.Problem#evaluate(org.uma.jmetal.solution.Solution)
|
---|
| 361 | */
|
---|
| 362 | @Override
|
---|
| 363 | public void evaluate(DoubleSolution solution) {
|
---|
| 364 | double[][] coefficients = solutionToCoefficients(solution);
|
---|
| 365 |
|
---|
| 366 | final Attribute loc = data.attribute("loc");
|
---|
| 367 | double effectiveness = 0.0;
|
---|
| 368 | double cost = 0.0;
|
---|
| 369 | for (int i = 0; i < data.size(); i++) {
|
---|
| 370 | double currentClass = logisticRegression(coefficients, data.get(i));
|
---|
| 371 | if (currentClass == 1.0) {
|
---|
| 372 | if (data.get(i).classValue() == 1.0) {
|
---|
| 373 | effectiveness++;
|
---|
| 374 | }
|
---|
| 375 | cost -= data.get(i).value(loc);
|
---|
| 376 | }
|
---|
| 377 | }
|
---|
| 378 |
|
---|
| 379 | solution.setObjective(0, effectiveness);
|
---|
| 380 | solution.setObjective(1, cost);
|
---|
| 381 | }
|
---|
| 382 |
|
---|
| 383 | /*
|
---|
| 384 | * (non-Javadoc)
|
---|
| 385 | *
|
---|
| 386 | * @see
|
---|
| 387 | * org.uma.jmetal.problem.ConstrainedProblem#evaluateConstraints(org.uma.jmetal.solution.
|
---|
| 388 | * Solution)
|
---|
| 389 | */
|
---|
| 390 | @Override
|
---|
| 391 | public void evaluateConstraints(DoubleSolution solution) {
|
---|
| 392 | double constraintViolation = minEffectiveness - solution.getObjective(0);
|
---|
| 393 | if (constraintViolation > 0) {
|
---|
| 394 | overallConstraintViolationDegree.setAttribute(solution, constraintViolation);
|
---|
| 395 | numberOfViolatedConstraints.setAttribute(solution, 1);
|
---|
| 396 | }
|
---|
| 397 | else {
|
---|
| 398 | overallConstraintViolationDegree.setAttribute(solution, 0.0);
|
---|
| 399 | numberOfViolatedConstraints.setAttribute(solution, 0);
|
---|
| 400 | }
|
---|
| 401 | }
|
---|
| 402 | }
|
---|
| 403 | }
|
---|