Ignore:
Timestamp:
10/31/14 15:54:08 (10 years ago)
Author:
atrautsch
Message:

Mehr kommentiert.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/CrossPare/src/de/ugoe/cs/cpdp/training/WekaLocalTraining2.java

    r19 r20  
    8484                private HashMap<Integer, ArrayList<Double[][]>> csize; 
    8585                 
     86                /* debug vars */ 
     87                @SuppressWarnings("unused") 
    8688                private boolean show_biggest = true; 
    8789                 
     90                @SuppressWarnings("unused") 
    8891                private int CFOUND = 0; 
     92                @SuppressWarnings("unused") 
    8993                private int CNOTFOUND = 0; 
    9094                 
     
    260264                                //} 
    261265 
    262                                 // now it can happen that we dont find a cluster because we deleted it previously (too few instances) 
     266                                // now it can happen that we do not find a cluster because we deleted it previously (too few instances) 
    263267                                // or we get bigger distance measures from weka so that we are completely outside of our clusters. 
    264268                                // in these cases we just find the nearest cluster to our instance and use it for classification. 
     
    280284                                } 
    281285                                 
    282                                 // here we have the cluster where an instance has the minimum distance between itself the 
     286                                // here we have the cluster where an instance has the minimum distance between itself and the 
    283287                                // instance we want to classify 
    284288                                // if we still have not found a cluster we exit because something is really wrong 
     
    436440                        */ 
    437441                         
    438                     // train one classifier per cluster, we get the clusternumber from the traindata 
     442                    // train one classifier per cluster, we get the cluster number from the traindata 
    439443                    int cnumber; 
    440444                        Iterator<Integer> clusternumber = ctraindata.keySet().iterator(); 
     
    444448                        while ( clusternumber.hasNext() ) { 
    445449                                cnumber = clusternumber.next(); 
    446                                 cclassifier.put(cnumber,setupClassifier()); // das hier ist der eigentliche trainer  
     450                                cclassifier.put(cnumber,setupClassifier());  // this is the classifier used for the cluster  
    447451                                cclassifier.get(cnumber).buildClassifier(ctraindata.get(cnumber)); 
    448452                                //Console.traceln(Level.INFO, String.format("classifier in cluster "+cnumber)); 
Note: See TracChangeset for help on using the changeset viewer.